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INTERSECTION BOUNDS: ESTIMATION AND INFERENCE

BY VICTOR CHERNOZHUKOV, SOKBAE LEE, AND ADAM M. ROSEN1

We develop a practical and novel method for inference on intersection bounds,
namely bounds defined by either the infimum or supremum of a parametric or non-
parametric function, or, equivalently, the value of a linear programming problem with
a potentially infinite constraint set. We show that many bounds characterizations in
econometrics, for instance bounds on parameters under conditional moment inequal-
ities, can be formulated as intersection bounds. Our approach is especially convenient
for models comprised of a continuum of inequalities that are separable in parame-
ters, and also applies to models with inequalities that are nonseparable in parameters.
Since analog estimators for intersection bounds can be severely biased in finite sam-
ples, routinely underestimating the size of the identified set, we also offer a median-
bias-corrected estimator of such bounds as a by-product of our inferential procedures.
We develop theory for large sample inference based on the strong approximation of a
sequence of series or kernel-based empirical processes by a sequence of “penultimate”
Gaussian processes. These penultimate processes are generally not weakly convergent,
and thus are non-Donsker. Our theoretical results establish that we can nonetheless
perform asymptotically valid inference based on these processes. Our construction also
provides new adaptive inequality/moment selection methods. We provide conditions
for the use of nonparametric kernel and series estimators, including a novel result that
establishes strong approximation for any general series estimator admitting lineariza-
tion, which may be of independent interest.

KEYWORDS: Bound analysis, conditional moments, partial identification, strong ap-
proximation, infinite-dimensional constraints, linear programming, concentration in-
equalities, anti-concentration inequalities, non-Donsker empirical process methods,
moderate deviations, adaptive moment selection.

1. INTRODUCTION

THIS PAPER DEVELOPS a practical and novel method for estimation and infer-
ence on intersection bounds. Such bounds arise in settings where the parame-
ter of interest, denoted θ∗, is known to lie within the bounds [θl(v)�θu(v)] for
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each v in some set V ⊆ R
d , which may be uncountably infinite. The identifica-

tion region for θ∗ is then

ΘI =
⋂
v∈V

[
θl(v)�θu(v)

]=
[
sup
v∈V

θl(v)� inf
v∈V
θu(v)

]
�(1.1)

Intersection bounds stem naturally from exclusion restrictions (Manski (2003))
and appear in numerous applied and theoretical examples.2 A leading case is
that where the bounding functions are conditional expectations with contin-
uous conditioning variables, yielding conditional moment inequalities. More
generally, the methods of this paper apply to any estimator for the value of a
linear programming problem with an infinite-dimensional constraint set.

This paper covers both parametric and nonparametric estimators of bound-
ing functions θl(·) and θu(·). We provide formal justification for parametric,
series, and kernel-type estimators via asymptotic theory based on the strong
approximation of a sequence of empirical processes by a sequence of Gaus-
sian processes. This includes an important new result on strong approximation
for series estimators that applies to any estimator that admits a linear approx-
imation, essentially providing a functional central limit theorem for series es-
timators for the first time in the literature. In addition, we generalize existing
results on the strong approximation of kernel-type estimators to regression
models with multivariate outcomes, and we provide a novel multiplier method
to approximate the distribution of such estimators. For each of these estima-
tion methods, the paper provides the following information:

(i) Confidence regions that achieve a desired asymptotic level.
(ii) Novel adaptive inequality selection (AIS) needed to construct sharp

critical values, which in some cases result in confidence regions with exact
asymptotic size.3

2Examples include average treatment effect bounds from instrumental variable restrictions
(Manski (1990)), bounds on the distribution of treatment effects in a randomized experiment
(Heckman, Smith, and Clements (1997)), treatment effect bounds from nonparametric selec-
tion equations with exclusion restrictions (Heckman and Vytlacil (1999)), monotone instrumen-
tal variables and the returns to schooling (Manski and Pepper (2000)), English auctions (Haile
and Tamer (2003)), the returns to language skills (Gonzalez (2005)), changes in the distribution
of wages (Blundell, Gosling, Ichimura, and Meghir (2007)), the study of disability and employ-
ment (Kreider and Pepper (2007)), unemployment compensation reform (Lee and Wilke (2009)),
set identification with Tobin regressors (Chernozhukov, Rigobon, and Stoker (2010)), endogene-
ity with discrete outcomes (Chesher (2010)), estimation of income poverty measures (Nicoletti,
Foliano, and Peracchi (2011)), bounds on average structural functions and treatment effects in
triangular systems (Shaikh and Vytlacil (2011)), and set identification with imperfect instruments
(Nevo and Rosen (2012)).

3The previous literature (e.g., Chernozhukov, Hong, and Tamer (2007)) and contemporaneous
papers (such as Andrews and Shi (2013)) use “nonadaptive" cutoffs such as C

√
logn. Ideally C

should depend on the problem at hand and so careful calibration might be required in practice.
Our new AIS procedure provides data-driven, adaptive cutoffs, which do not require calibration.
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(iii) Convergence rates for the boundary points of these regions.
(iv) A characterization of local alternatives against which the associated

tests have nontrivial power.
(v) Half-median-unbiased estimators of the intersection bounds.

Moreover, our paper also extends inferential theory based on empirical pro-
cesses in Donsker settings to non-Donsker cases. The empirical processes aris-
ing in our problems do not converge weakly to a Gaussian process, but can
be strongly approximated by a sequence of “penultimate” Gaussian processes,
which we use directly for inference without resorting to further approxima-
tions, such as the extreme value approximations in Bickel and Rosenblatt
(1973). These new methods may be of independent interest for a variety of
other problems.

Our results also apply to settings where a parameter of interest, say μ, is
characterized by intersection bounds of the form (1.1) on an auxiliary function
θ(μ). Then the bounding functions have the representation

θl(v) := θl(v;μ) and θu(v) := θu(v;μ)�(1.2)

and thus inference statements for θ∗ := θ(μ) bounded by θl(·) and θu(·) can
be translated to inference statements for the parameter μ. This includes cases
where the bounding functions are a collection of conditional moment functions
indexed by μ. When the auxiliary function is additively separable in μ, the re-
lation between the two is simply a location shift. When the auxiliary function is
nonseparable in μ, inference statements on θ∗ still translate to inference state-
ments on μ, though the functional relation between the two is more complex.

This paper overcomes significant complications for estimation of and infer-
ence on intersection bounds. First, because the bound estimates are suprema
and infima of parametric or nonparametric estimators, closed-form character-
ization of their asymptotic distributions is typically unavailable or difficult to
establish. As a consequence, researchers have often used the canonical boot-
strap for inference, yet the recent literature indicates that the canonical boot-
strap is not generally consistent in such settings; see, for example, Andrews and
Han (2009), Bugni (2010), and Canay (2010).4 Second, since sample analogs of
the bounds of ΘI are the suprema and infima of estimated bounding func-
tions, they have substantial finite sample bias, and estimated bounds tend to
be much tighter than the population bounds. This was noted by Manski and
Pepper (2000, 2009), and some heuristic bias adjustments have been proposed
by Haile and Tamer (2003) and Kreider and Pepper (2007).

Note that our AIS procedure could be iterated via stepdown, for example, as in Chetverikov
(2012). We omit the details for brevity.

4Recent papers by Andrews and Shi (2013) and Kim (2009) provide justification for subsam-
pling procedures for the statistics they employ for inference with conditional moment inequali-
ties. We discuss these papers further in our literature review below.
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We solve the problem of estimation and inference for intersection bounds by
proposing bias-corrected estimators of the upper and lower bounds, as well as
confidence intervals. Specifically, our approach employs a precision correction
to the estimated bounding functions v �→ θ̂l(v) and v �→ θ̂u(v) before apply-
ing the supremum and infimum operators. We adjust the estimated bounding
functions for their precision by adding to each of them an appropriate criti-
cal value times their pointwise standard error. Then, depending on the choice
of the critical value, the intersection of these precision-adjusted bounds pro-
vides (i) confidence sets for either the identified set ΘI or the true parameter
value θ∗, or (ii) bias-corrected estimators for the lower and upper bounds. Our
bias-corrected estimators are half-median-unbiased in the sense that the upper
bound estimator θ̂u exceeds θu and the lower bound estimator θ̂l falls below θl

each with probability at least 1
2 asymptotically. Due to the presence of the inf

and sup operators in the definitions of θu and θl, achieving unbiasedness is im-
possible in general, as shown by Hirano and Porter (2012), and this motivates
our half-unbiasedness property. Bound estimators with this property are also
proposed by Andrews and Shi (2013; henceforth AS). An attractive feature of
our approach is that the only difference in the construction of our estimators
and confidence intervals is the choice of a critical value. Thus, practitioners
need not implement two entirely different methods to construct estimators and
confidence bands with desirable properties.

This paper contributes to a growing literature on inference on set-identified
parameters bounded by inequality restrictions. The prior literature focused pri-
marily on models with a finite number of unconditional inequality restrictions.
Some examples include Andrews and Jia (2012), Andrews and Guggenberger
(2009), Andrews and Soares (2010), Beresteanu and Molinari (2008), Bugni
(2010), Canay (2010), Chernozhukov, Hong, and Tamer (2007), Galichon and
Henry (2009), Romano and Shaikh (2008, 2010), and Rosen (2008), among
others. We contribute to this literature by considering inference with a contin-
uum of inequalities. Contemporaneous and independently written research on
conditional moment inequalities includes AS, Kim (2009), and Menzel (2009).
Our approach differs from all of these. Whereas we treat the problem with
fundamentally nonparametric methods, AS provided inferential statistics that
transform the model’s conditional restrictions to unconditional ones through
the use of instrument functions.5 In this sense our approach is similar in spirit
to that of Härdle and Mammen (1993) (although they used the L2 norm and
we use a sup test), while the approach of AS parallels that of Bierens (1982) for
testing a parametric specification against a nonparametric alternative. As such,

5Thus, the two approaches also require different assumptions. We rely on the strong approx-
imation of a studentized version of parametric or nonparametric bounding function estimators
(e.g., conditional moment functions in the context of conditional moment inequalities), while AS
required that a functional central limit theorem hold for the transformed unconditional moment
functions, which involve instrument functions not present in this paper.
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these approaches are complementary, each with their relative merits, as we
describe in further detail below. Kim (2009) proposed an inferential method
related to that of AS, but where data-dependent indicator functions play the
role of instrument functions. Menzel (2009) considered problems where the
number of moment inequalities defining the identified set is large relative to
the sample size. He provided results on the use of a subset of such restrictions
in any finite sample, where the number of restrictions employed grows with the
sample size, and examined the sensitivity of estimation and inference methods
to the rate with which the number of moments used grows with the sample size.

The classes of models to which our approach and others in the recent lit-
erature apply have considerable overlap, most notably in models comprised
of conditional moment inequalities and, equivalently, models whose bounding
functions are conditional moment functions. Relative to other approaches, our
approach is especially convenient for inference in parametric and nonparamet-
ric models with a continuum of inequalities that are separable in parameters,
that is, those admitting representations of the form

sup
v∈V

θl(v)≤ θ∗ ≤ inf
v∈V
θu(v)�

as in (1.1). Our explicit use of nonparametric estimation of bounding functions
renders our method applicable in settings where the bounding functions de-
pend on covariates in addition to the variable V , that is, where the function
θ(x) at a point x is the object of interest, with

sup
v∈V

θl(x� v)≤ θ(x)≤ inf
v∈V
θu(x� v)�

When the functions θl(x� v) and θu(x� v) are nonparametrically specified,
these can be estimated by either the series or kernel-type estimators we study
in Section 4. At present most other approaches do not appear to immediately
apply when we are interested in θ(x) at a point x, when covariates X are con-
tinuously distributed, with the exception of the recent work by Fan and Park
(2011) in the context of instrumental variable (IV) and monotone instrumen-
tal variable (MIV) bounds, and that of Andrews and Shi (2011), which extends
methods developed in AS to this case.6

To better understand the comparison between our point and interval estima-
tors and those of AS when both are applicable, consider as a simple example
the case where θ∗ ≤ E[Y |V ] almost surely, with E[Y |V = v] continuous in v.
Then the upper bound on θ∗ is θ0 = infv∈V E[Y |V = v] over some region V .
θ0 is a nonparametric functional and can, in general, only be estimated at a

6The complication is that inclusion of additional covariates in a nonparametric framework
requires a method for localization of the bounding function around the point x. With some non-
trivial work and under appropriate conditions, the other approaches can likely be adapted to this
context.
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nonparametric rate: that is, one cannot construct point or interval estimators
that converge to θ0 at superefficient rates, that is, rates that exceed the opti-
mal nonparametric rate for estimating θ(v) := θu(v)= E[Y |V = v].7 Our pro-
cedure delivers point and interval estimators that can converge to θ0 at this
rate, up to an undersmoothing factor. However, there exist point and interval
estimators that can achieve faster (superefficient) convergence rates at some
values of θ(·). In particular, if the bounding function θ(·) happens to be flat
on the argmin set V0 = {v ∈ V :θ(v) = θ0}, meaning that V0 is a set of positive
Lebesgue measure, then the point and interval estimator of AS can achieve
the convergence rate of n−1/2. As a consequence, their procedure for testing
θna ≤ θ0 against θna > θ0, where θna = θ0 + C/

√
n for C > 0, has nontrivial

asymptotic power, while our procedure does not. If, however, θ(·) is not flat
on V0, then the testing procedure of AS no longer has power against the afore-
mentioned n−1/2 alternatives, and results in point and interval estimators that
converge to θ0 at a suboptimal rate.8 In contrast, our procedure delivers point
and interval estimators that can converge at nearly the optimal rate, and hence
can provide better power in these cases. In applications, both flat and nonflat
cases are important, and we therefore believe that both testing procedures are
useful.9 For further comparisons, we refer the reader to our Monte Carlo sec-
tion (Section 7) and to the Supplemental Material (Chernozhukov, Lee, and
Rosen (2013)) Appendices K and L, which confirm these points both analyti-
cally and numerically.10

There are some more recent additions to the literature on conditional mo-
ment inequalities. Lee, Song, and Whang (2013) developed a test for condi-

7Suppose, for example, that V0 = arg infv∈V θ(v) is a singleton, with θ0 = θ(v) for some v ∈ V .
Then θ0 is a nonparametric function evaluated at a single point, which cannot be estimated faster
than the optimal nonparametric rate. Lower bounds on the rates of convergence in nonpara-
metric models are characterized, for example, by Stone (1982) and Tsybakov (2009). Having a
uniformly superefficient procedure would contradict these lower bounds.

8With regard to confidence intervals/interval estimators, we mean here that the upper bound
of the confidence interval does not converge at this rate.

9Note also that nonflat cases can be justified as generic if, for example, one takes θ(·) as a
random draw from the Sobolev ball equipped with the Gaussian (Wiener) measure.

10See Supplemental Material Appendix K for specific examples, and see Armstrong (2011b) for
a comprehensive analysis of the power properties of the procedure of Andrews and Shi (2013).
We also note that this qualitative comparison of local asymptotic power properties conforms
with related results regarding tests of parametric models versus nonparametric (PvNP) alterna-
tives, which involve moment equalities. Recall that our test relies on nonparametric estimation
of bound-generating functions, which often take the form of conditional moment inequalities,
and is similar in spirit to the approach of, for example, Härdle and Mammen (1993) in the PvNP
testing literature. On the other hand, the statistics employed by AS rely on a transformation of
conditional restrictions to unconditional ones in similar spirit to Bierens (1982). Tests of the lat-
ter type have been found to have power against some n−1/2 alternatives, while the former do not.
However, tests of the first type typically have nontrivial power against a larger class of alterna-
tives, and so achieve higher power against some classes of alternatives. For further details, see,
for example, Horowitz and Spokoiny (2001) and the references therein.
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tional moment inequalities using a one-sided version of Lp-type functionals
of kernel estimators. Their approach is based on a least favorable configura-
tion that permits valid but possibly conservative inference using standard nor-
mal critical values. Armstrong (2011b) and Chetverikov (2011) both proposed
interesting and important approaches to estimation and inference based on
conditional moment inequalities, which can be seen as introducing full stu-
dentization in the procedure of AS, fundamentally changing its behavior. The
resulting procedures use a collection of fully studentized nonparametric esti-
mators for inference, bringing them much closer to the approach of this paper.
Their implicit nonparametric estimators are locally constant with an adaptively
chosen bandwidth. Our approach is specifically geared to smooth cases, where
θu(·) and θl(·) are continuously differentiable of order s ≥ 2, resulting in more
precise estimates and hence higher power in these cases.11 On the other hand,
in less smooth cases, the procedures of Armstrong (2011b) and Chetverikov
(2011) automatically adapt to deliver optimal estimation and testing proce-
dures, and so can perform somewhat better than our approach in these cases.
Armstrong (2011a) derived the convergence rate and asymptotic distribution
for a test statistic related to that in Armstrong (2011b) when evaluated at pa-
rameter values on the boundary of the identified set, drawing a connection to
the literature on nonstandardM-estimation. Ponomareva (2010) studied boot-
strap procedures for inference using kernel-based estimators, including one
that can achieve asymptotically exact inference when the bounding function
is uniquely maximized at a single point and locally quadratic. Our simulation-
based approach does not rely on these conditions for its validity, but will au-
tomatically achieve asymptotic exactness with appropriately chosen smoothing
parameters in a sufficiently regular subset of such cases.

Plan of the Paper

We organize the paper as follows. In Section 2, we motivate the analysis
with examples and provide an informal overview of our results. In Section 3,
we provide a formal treatment of our method under high-level conditions. In
Section 4, we provide conditions and theorems for validity for parametric and
nonparametric series and kernel-type estimators. We provide several examples
that demonstrate the use of primitive conditions to verify the conditions of Sec-
tion 3. This includes sufficient conditions for the application of these estima-
tors to models comprised of conditional moment inequalities. In Section 5, we
provide a theorem that establishes strong approximation for series estimators
admitting an asymptotic linear representation and that covers the examples of
Section 4. Likewise, we provide a theorem that establishes strong approxima-
tion for kernel-type estimators in Appendix G.2 of the Supplemental Material.

11Note that to harness power gains higher order kernels or series estimators should be used;
our analysis allows for either.
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In Section 6, we provide step-by-step implementation guides for parametric
and nonparametric series and kernel-type estimators. In Section 7, we illustrate
the performance of our method using both series and kernel-type estimators
in Monte Carlo experiments, which we compare to that of AS in terms of cov-
erage frequency and power. Our method performs well in these experiments,
and we find that our approach and that of AS perform favorably in different
models, depending on the shape of the bounding function. Section 8 concludes.
In Appendices A–D, we recall the definition of strong approximation and pro-
vide proofs, including the proof of the strong approximation result for series
estimators. The Supplemental Material contains further appendices. The first
of these, Appendix E, provides proofs omitted from the main text.12 Appen-
dices F–H concern kernel-type estimators, providing primitive conditions for
their application to conditional moment inequalities, strong approximation re-
sults, and the multiplier method, enabling inference via simulation, and proofs.
Appendix I provides additional details on the use of primitive conditions to
verify an asymptotic linear expansion needed for strong approximation of se-
ries estimators and Appendix J gives some detailed arguments for local poly-
nomial estimation of conditional moment inequalities. Appendix K provides
local asymptotic power analysis that supports the findings of our Monte Carlo
experiments. Appendix L provides further Monte Carlo evidence.

Notation

For any two reals a and b, a ∨ b= max{a�b} and a ∧ b= min{a�b}. Qp(X)
denotes the pth quantile of random variable X . We use wp → 1 as shorthand
for “with probability approaching 1 as n → ∞.” We write Nk =d N(0� Ik) to
denote that the k-variate random vector Nk is distributed multivariate nor-
mal with mean zero and variance the k × k identity matrix. To denote prob-
ability statements conditional on observed data, we write statements condi-
tional on Dn. En and Pn denote the sample mean and empirical measure, re-
spectively. That is, given independent and identically distributed (i.i.d.) ran-
dom vectors X1� � � � �Xn, we have Enf = ∫

f dPn = n−1
∑n

i=1 f (Xi). In addition,
let Gnf = √

n(En − E)f = n−1/2
∑n

i=1[f (Xi) − Ef(X)]. The notation an � bn
means that an ≤ Cbn for all n; Xn �Pn cn abbreviates Xn =OPn(cn). Xn →Pn ∞
means that for any constant C > 0, Pn(Xn < C) → 0. We use V to denote a
generic compact subset of V , and we write diam(V) to denote the diameter
of V in the Euclidean metric. ‖ · ‖ denotes the Euclidean norm, and for any
two sets A�B in Euclidean space, dH(A�B) denotes the Hausdorff pseudo-
distance between A and B with respect to the Euclidean norm. C stands for
a generic positive constant, which may be different in different places, un-
less stated otherwise. For a set V and an element v in Euclidean space, let
d(v�V) := infv′∈V ‖v− v′‖. For a function p(v), let lip(p) denote the Lipschitz

12Specifically, Appendix E contains the proofs of Lemmas 2 and 4.
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coefficient, that is, lip(p) := L such that ‖p(v1)− p(v2)‖ ≤ L‖v1 − v2‖ for all
v1 and v2 in the domain of p(v).

2. MOTIVATING EXAMPLES AND INFORMAL OVERVIEW OF RESULTS

In this section, we briefly describe three examples of intersection bounds
from the literature and provide an informal overview of our results.

EXAMPLE A—Treatment Effects and Instrumental Variables: In the analy-
sis of treatment response, the ability to uniquely identify the distribution of po-
tential outcomes is typically lacking without either experimental data or strong
assumptions. This owes to the fact that for each individual unit of observation,
only the outcome from the received treatment is observed; the counterfactual
outcome that would have occurred given a different treatment is not known.
Although we focus here on treatment effects, similar issues are present in other
areas of economics. In the analysis of markets, for example, observed equilib-
rium outcomes reveal quantity demanded at the observed price, but do not
reveal what demand would have been at other prices.

Suppose only that the support of the outcome space is known, Y ∈ [0�1], but
no other assumptions are made regarding the distribution of counterfactual
outcomes. Manski (1989, 1990) provided worst-case bounds on mean treat-
ment outcomes for any treatment t conditional on observables (X�V )= (x� v),

θl(x� v)≤E
[
Y(t)|X = x�V = v

]≤ θu(x� v)�

where the bounds are

θl(x� v) :=E
[
Y · 1{Z = t}|X = x�V = v

]
�

θu(x� v) :=E
[
Y · 1{Z = t} + 1{Z �= t}|X = x�V = v

]
�

where Z is the observed treatment. If V is an instrument satisfying E[Y(t)|X�
V ] = E[Y(t)|X], then for any fixed x, bounds on θ∗ := θ∗(x) :=E[Y(t)|X = x]
are given by

sup
v∈V

θl(x� v)≤ θ∗(x)≤ inf
v∈V
θu(x� v)

for any V ⊆ Supp(V |X = x), where the subset V will be taken as known for es-
timation purposes. Similarly, bounds implied by restrictions such as monotone
treatment response, monotone treatment selection, and monotone instrumen-
tal variables, as in Manski (1997) and Manski and Pepper (2000), also take the
form of intersection bounds.

EXAMPLE B—Bounding Distributions to Account for Selection: Similar
analysis applies to inference on distributions whose observations are censored
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due to selection. This approach was used by Blundell et al. (2007) to study
changes in male and female wages. The starting point of their analysis is that
the cumulative distribution F(w|x�v) of wages W at any point w, conditional
on observables (X�V )= (x� v), must satisfy the worst-case bounds

θl(x� v)≤ F(w|x�v)≤ θu(x� v)�(2.1)

where D is an indicator of employment, and hence observability of W , so that

θl(x� v) :=E
[
D · 1{W ≤w}|X = x�V = v

]
�

θu(x� v) :=E
[
D · 1{W ≤w} + (1 −D)|X = x�V = v

]
�

This relation is used to bound quantiles of conditional wage distributions. Ad-
ditional restrictions motivated by economic theory are then used to tighten the
bounds.

One such restriction is an exclusion restriction of the continuous variable
out-of-work income, V . They considered the use of V as either an excluded or
monotone instrument. The former restriction implies bounds on the parameter
θ∗ := F(w|x),

sup
v∈V

θl(x� v)≤ F(w|x)≤ inf
v∈V
θu(x� v)(2.2)

for any V ⊆ support(V |X = x), while the weaker monotonicity restriction,
namely that F(w|x�v) is weakly increasing in v, implies the bounds on θ∗ :=
F(w|x�v0) for any v0 in support(V |X = x),

sup
v∈Vl

θl(x� v)≤ F(w|x�v0)≤ inf
v∈Vu

θu(x� v)�(2.3)

where Vl = {v ∈ V :v≤ v0} and Vu = {v ∈ V :v≥ v0}.

EXAMPLE C—(Conditional) Conditional Moment Inequalities: Our infer-
ential method can also be used for pointwise inference on parameters re-
stricted by (possibly conditional) conditional moment inequalities. Such re-
strictions arise naturally in empirical work in industrial organization; see, for
example, Pakes, Porter, Ho, and Ishii (2005) and Berry and Tamer (2007).

To illustrate, consider the restriction

E
[
mj(X�μ0)|Z = z

]≥ 0 for all j = 1� � � � � J and z ∈ Zj�(2.4)

where each mj(·� ·)� j = 1� � � � � J, is a real-valued function, (X�Z) are observ-
ables, and μ0 is the parameter of interest. Note that this parameter can depend
on a particular covariate value. Suppose, for instance, that Z = (Z1�Z2) and
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interest lies in the subgroup of the population with Z1 = z1, so that the re-
searcher wishes to condition on Z1 = z1. In this case, μ0 = μ0(z1) depends on
z1. Conditioning on this value, we have from (2.4) that

E
[
mj(X�μ0)|Z1 = z1�Z2 = z2

]≥ 0

for all j = 1� � � � � J and z2 ∈ Supp(Z2|Z1 = z1)�

which is equivalent to (2.4) with Zj = Supp(Z|Z1 = z1). Note also that regions
Zj can depend on the inequality j as in (2.3) of the previous example and that
the previous two examples can, in fact, be cast as special cases of this one.

Suppose that we would like to test (2.4) at level α for the conjectured pa-
rameter value μ0 = μ against an unrestricted alternative. To see how this can
be done, define

v= (z� j)� V := {
(z� j) :z ∈ Zj� j ∈ {1� � � � � J}}�

θ(μ�v) :=E
[
mj(X�μ)|Z = z

]
�

and θ̂(μ�v) a consistent estimator. Under some continuity conditions, this is
equivalent to a test of θ0(μ) := infv∈V θ(μ�v) ≥ 0 against infv∈V θ(μ�v) < 0.
Our method for inference delivers a statistic

θ̂α(μ)= inf
v∈V

[
θ̂(μ�v)+ k̂ · s(μ�v)]

such that lim supn→∞ P(θ0(μ) ≥ θ̂α(μ)) ≤ α under the null hypothesis. Here,
s(μ�v) is the standard error of θ̂(μ�v) and k̂ is an estimated critical value, as
we describe below. If θ̂α(μ) < 0, we reject the null hypothesis, while if θ̂α(μ)≥
0, we do not.

Informal Overview of Results

We now provide an informal description of our method for estimation and
inference. Consider an upper bound θ0 on θ∗ of the form

θ∗ ≤ θ0 := inf
v∈V
θ(v)�(2.5)

where v �→ θ(v) is a bounding function and V is the set over which the infimum
is taken. We focus on describing our method for the upper bound (2.5), as the
lower bound is entirely symmetric. In fact, any combination of upper and lower
bounds can be combined into upper bounds on an auxiliary function of θ∗ of
the form (2.5), and this can be used for inference on θ∗, as we describe in
Section 6.13

13Alternatively, one can combine one-sided intervals for lower and upper bounds for inference
on the identified set ΘI using Bonferroni’s inequality, or for inference on θ∗ using the method
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What are good estimators and confidence regions for the bound θ0? A natu-
ral idea is to base estimation and inference on the sample analog: infv∈V θ̂(v).
However, this estimator does not perform well in practice. First, the analog es-
timator tends to be downward biased in finite samples. As discussed in the In-
troduction, this will typically result in bound estimates that are much narrower
than those in the population; see, for example, Manski and Pepper (2000, 2009)
for more on this point. Second, inference must appropriately take into account
sampling error of the estimator θ̂(v) across all values of v. Indeed, different
levels of precision of θ̂(v) at different points can severely distort the perception
of the minimum of the bounding function θ(v). Figure 1 illustrates these prob-
lems geometrically. The solid curve is the true bounding function v �→ θ(v) and
the dash-dotted thick curve is its estimate v �→ θ̂(v). The remaining dashed
curves represent eight additional potential realizations of the estimator, illus-
trating its precision. In particular, we see that the precision of the estimator is
much lower on the right side than on the left. A naïve sample analog estimate
for θ0 is provided by the minimum of the dash-dotted curve, but this estimate
can, in fact, be quite far away from θ0. This large deviation from the true value
arises from both the lower precision of the estimated curve on the right side of
the figure and from the downward bias created by taking the minimum of the
estimated curve.

To overcome these problems, we propose a precision-corrected estimate of
θ0,

θ̂0(p) := inf
v∈V

[
θ̂(v)+ k(p) · s(v)]�(2.6)

where s(v) is the standard error of θ̂(v), and k(p) is a critical value, the se-
lection of which is described below. That is, our estimator θ̂0(p) minimizes
the precision-corrected curve given by θ̂(v) plus critical value k(p) times the
pointwise standard error s(v). Figure 2 shows a precision-corrected curve as a
dashed curve with a particular choice of critical value k. In this figure, we see
that the minimizer of the precision-corrected curve can indeed be much closer
to θ0 than the sample analog infv∈V θ̂(v).

These issues are important both in theory and in practice, as can be seen
in the application in our working paper version (Chernozhukov, Lee, and
Rosen (2009)). There we used the data from the National Longitudinal Sur-
vey of Youth of 1979 (NLSY79), as in Carneiro and Lee (2009), to estimate
bounds on expected log wages Yi as a function of years of schooling t. We used
Armed Forces Qualifying Test score (AFQT) normalized to have mean zero
as a monotone instrumental variable, and estimated the MIV-MTR (mono-

described in Chernozhukov, Lee, and Rosen (2009, Section 3.7), which is a slight generalization
of methods previously developed by Imbens and Manski (2004) and Stoye (2009).
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FIGURE 1.—Illustration of how variation in the precision of the analog estimator at different
points may impede inference. The solid curve is the true bounding function θ(v), while the dash–
dotted curve is a single realization of its estimator, θ̂(v). The lighter dashed curves depict eight
additional representative realizations of the estimator, illustrating its precision at different values
of v. The minimum of the estimator θ̂(v) is indeed quite far from the minimum of θ(v), making
the empirical upper bound unduly tight.

tone instrument variable–monotone treatment response) bounds of Manski
and Pepper (2000). Figures 3 and 4 highlight the same issues as the schematic
Figures 1 and 2 with the NLSY data and the MIV-MTR upper bound for the
parameter θ∗ = P[Yi(t) > y|Vi = v], at y = log(24) (∼90th percentile of hourly
wages) and v= 0 for college graduates (t = 16).14

14The parameter θ∗ used for this illustration differs from the conditional expectations bounded
in Chernozhukov, Lee, and Rosen (2009). For further details regarding the application and the
data, we refer to that version, which is available at http://cemmap.ifs.org.uk/wps/cwp1909.pdf.

http://cemmap.ifs.org.uk/wps/cwp1909.pdf
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FIGURE 2.—Depiction of a precision-corrected curve (dashed curve) that adjusts the boundary
estimate θ̂(v) (dotted curve) by an amount proportional to its pointwise standard error. The
minimum of the precision-corrected curve is closer to the minimum of the true curve (solid) than
the minimum of θ̂(v), removing the downward bias.

Figure 3 shows the nonparametric series estimate of the bounding function
using B-splines as described in Section 7.2 (solid curve) and 20 bootstrap esti-
mates (dashed curves). The precision of the estimate is worst when the AFQT
is near 2, as demonstrated by the bootstrap estimates. At the same time, the
bounding function has a decreasing shape with the minimum at AFQT = 2.
Figure 4 shows a precision-corrected curve (solid curve) that adjusts the bound
estimate θ̂(v) (dashed curve) by an amount proportional to its pointwise stan-
dard error; the horizontal dashed line shows the end point of a 95% one-sided
confidence interval. As in Figure 2, the minimizer of the precision-corrected
curve is quite far from that of the uncorrected estimate of the bounding func-
tion.
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FIGURE 3.—Depiction based on NLSY data and the application in Section 5 of Chernozhukov,
Lee, and Rosen (2009) of an estimate of the bounding function (solid curve) and 20 bootstrapped
estimates (dashed curves).

The degree of precision correction, both in these figures and in general, is
driven by the critical value k(p). The main input in the selection of k(p) for
the estimator θ̂0(p) in (2.6) is the standardized process

Zn(v)= θ(v)− θ̂(v)

σ(v)
�

where σ(v)/s(v)→ 1 in probability uniformly in v. Generally, the finite sample
distribution of the process Zn is unknown, but we can approximate it uniformly
by a sequence of Gaussian processes Z∗

n such that for an appropriate sequence
of constants ān,

ān sup
v∈V

∣∣Zn(v)−Z∗
n(v)

∣∣= op(1)�(2.7)

For any compact set V, used throughout to denote a generic compact subset
of V , we then approximate the quantiles of supv∈VZ

∗
n(v) either by analytical

methods based on asymptotic approximations or by simulation. We then use
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FIGURE 4.—Depiction based on NLSY data and the application in Section 5 of Chernozhukov,
Lee, and Rosen (2009) of a precision-corrected curve (solid curve) that adjusts the boundary
estimate θ̂(v) (dashed curve) by an amount proportional to its pointwise standard error. The
horizontal dashed line shows the end point of the 95% one-sided confidence interval.

the p-quantile of this statistic, kn�V(p), in place of k(p) in (2.6). We show that,
in general, simulated critical values provide sharper inference and, therefore,
we advocate their use.

For the estimator in (2.6) to exceed θ0 with probability no less than p asymp-
totically, we require that wp → 1 the set V contains the argmin set

V0 := arg inf
v∈V

θ(v)�

A simple way to achieve this is to use V = V , which leads to asymptotically
valid but conservative inference. For construction of the critical value kn�V(p)
above, we thus propose the use of a preliminary set estimator V̂n for V0 us-
ing a novel adaptive inequality selection procedure. Because the critical value
kn�V(p) is nondecreasing in V for n large enough, this yields an asymptotic criti-
cal value no larger than those based on V = V . The set estimator V̂n is shown to
be sandwiched between two nonstochastic sequences of sets: a lower envelope
Vn and an upper envelope V n with probability going to 1. We show in Lemma 1



INTERSECTION BOUNDS 683

that our inferential procedure using V̂n concentrates on the lower envelope Vn,
which is a neighborhood of the argmin set V0. This validates our use of the set
estimator V̂n. The upper envelope V n, a larger—but nonetheless shrinking—
neighborhood of the argmin set V0, plays an important role in the derivation
of estimation rates and local power properties of our procedure. Specifically,
because this set contains V0 wp → 1, the tail behavior of supv∈V n Z

∗
n(v) can be

used to bound the estimation error of θ̂0(p) relative to θ0.
Moreover, we show that in some cases, inference based on simulated critical

values using V̂n in fact “concentrates” on V0 rather than just Vn. These cases re-
quire the scaled penultimate process ānZ∗

n to behave sufficiently well (i.e., to be
stochastically equicontinuous) within rn neighborhoods of V0, where rn denotes
the rate of convergence of the set estimator V̂n to the argmin set V0. When this
holds, the tail behavior of supv∈V0

Z∗
n(v) rather than supv∈V n Z

∗
n(v) bounds the

estimation error of our estimator. This typically leads to small improvements
in the convergence rate of our estimator and the local power properties of our
approach. The conditions for this to occur include the important special case
where V0 is singleton and where the bounding function is locally quadratic,
although it can hold more generally. The formal conditions are given in Sec-
tion 3.5, where we provide conditions for consistency and rates of convergence
of V̂n for V0, and in Section 3.6, where we provide the aforementioned equicon-
tinuity condition and a formal statement of the result regarding when inference
concentrates on V0.

At an abstract level, our method does not distinguish parametric estimators
of θ(v) from nonparametric estimators; however, details of the analysis and
regularity conditions are quite distinct. Our theory for nonparametric estima-
tion relies on undersmoothing, although for locally constant or sign-preserving
estimation of bounding functions, this does not appear essential, since the ap-
proximation bias is conservatively signed. In such cases, our inference algo-
rithm still applies to nonparametric estimates of bounding functions without
undersmoothing, although our theory would require some minor modifications
to handle this case. We do not formally pursue this here, but we provide some
simulation results for kernel estimation without undersmoothing as part of the
additional Monte Carlo experiments reported in Supplemental Material Ap-
pendix L.

For all estimators, parametric and nonparametric, we employ strong approx-
imation analysis to approximate the quantiles of supv∈VZn(v), and we verify our
conditions separately for each case. The formal definition of strong approxima-
tion is provided in Appendix A.
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3. ESTIMATION AND INFERENCE THEORY UNDER GENERAL CONDITIONS

3.1. Basic Framework

In this and subsequent sections, we allow the model and the probability mea-
sure to depend on n. Formally, we work with a probability space (A�A�Pn)
throughout. This approach is conventionally used in asymptotic statistics to
ensure robustness of statistical conclusions with respect to perturbations in Pn.
It guarantees the validity of our inference procedure under any sequence of
probability laws Pn that obey our conditions, including the case with fixed P.
We thus generalize our notation in this section to allow model parameters to
depend on n.

The basic setting is as follows:

CONDITION C.1—Setting: There is a nonempty compact set V ⊂ K ⊂ R
d ,

where V can depend on n and K is a bounded fixed set, independent of n.
There is a continuous real-valued function v �→ θn(v). There is an estimator
v �→ θ̂n(v) of this function, which is an almost surely (a.s.) continuous stochas-
tic process. There is a continuous function v �→ σn(v) that represents non-
stochastic normalizing factors bounded by σ̄n := supv∈V σn(v), and there is an
estimator v �→ sn(v) of these factors, which is an a.s. continuous stochastic pro-
cess, bounded above by s̄n := supv∈V sn(v).

We are interested in constructing point estimators and one-sided interval
estimators for

θn0 = inf
v∈V
θn(v)�

The main input in this construction is the standardized process

Zn(v)= θn(v)− θ̂n(v)

σn(v)
�

In the following discussion, we require that this process can be approximated
by a standardized Gaussian process in the metric space �∞(V) of bounded
functions that map V to R, which can be simulated for inference.

CONDITION C.2—Strong Approximation: (a) Zn is strongly approximated
by a sequence of penultimate Gaussian processes Z∗

n that have zero mean and
a.s. continuous sample paths,

sup
v∈V

∣∣Zn(v)−Z∗
n(v)

∣∣= oPn(δn)�

where EPn[(Z∗
n(v))

2] = 1 for each v ∈ V , and δn = o(ā−1
n ) for the sequence of

constants ān defined in Condition C.3 below. (b) Moreover, for simulation pur-
poses, there is a process Z


n, whose distribution is zero-mean Gaussian condi-
tional on the data Dn and such that EPn[(Z


n(v))
2|Dn] = 1 for each v ∈ V , that
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can approximate an identical copy Z̄∗
n of Z∗

n , where Z̄∗
n is independent of Dn,

namely there is an o(δn) term such that

Pn

[
sup
v∈V

∣∣Z̄∗
n(v)−Z


n(v)
∣∣> o(δn)∣∣Dn

]
= oPn(1/�n)

for some �n → ∞ chosen below.

For convenience we refer to Appendix A, where the definition of strong ap-
proximation is recalled. The penultimate process Z∗

n is often called a coupling,
and we construct such couplings for parametric and nonparametric estimators
under both high-level and primitive conditions. It is convenient to work with
Z∗
n , since we can rely on the fine properties of Gaussian processes. Note that

Z∗
n depends on n and generally does not converge weakly to a fixed Gaussian

process, and, therefore, is not asymptotically Donsker. Nonetheless, we can
perform either analytical or simulation-based inference based on these pro-
cesses.

Our next condition captures the so-called concentration properties of Gaus-
sian processes.

CONDITION C.3—Concentration: For all n sufficiently large and for any
compact, non-empty V ⊆ V , there is a normalizing factor an(V) that satisfies

1 ≤ an(V)≤ an(V)=: ān� an(V) is weakly increasing in V�

such that

En(V) := an(V)
(

sup
v∈V

Z∗
n(v)− an(V)

)
obeys

Pn

[
En(V)≥ x

]≤ P[E ≥ x]�(3.1)

where E is a random variable with continuous distribution function such that
for some η> 0,

P(E > x)≤ exp(−x/η)�
The concentration condition will be verified in our applications by appeal-

ing to the Talagrand–Samorodnitsky inequality for the concentration of the
suprema of Gaussian processes, which is sharper than the classical concentra-
tion inequalities.15 These concentration properties play a key role in our analy-
sis, as they determine the uniform speed of convergence ānσ̄n of the estimator

15For details, see Lemma 12 in Appendix C.1.
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θ̂n0(p) to θn0, where the estimator is defined later. In particular, this property
implies that for any compact Vn ⊆ V , EPn[supv∈Vn Z

∗
n(v)] � ān. As there is con-

centration, there is an opposite force, called anti-concentration, which implies
that under Conditions C.2(a) and C.3, for any δn = o(1/ān), we have

sup
x∈R

Pn

(∣∣∣sup
v∈Vn

Z∗
n(v)− x

∣∣∣≤ δn
)

→ 0�(3.2)

This follows from a generic anti-concentration inequality derived in Cherno-
zhukov, Chetverikov, and Kato (2011), which is quoted in Appendix B for con-
venience. Anti-concentration simplifies the construction of our confidence in-
tervals. Finally, the exponential tail property of E plays an important role in
the construction of our adaptive inequality selector, introduced below, since
it allows us to bound moderate deviations of the one-sided estimation noise,
namely supv∈VZ

∗
n(v).

Our next assumption requires uniform consistency as well as suitable esti-
mates of σn.

CONDITION C.4 —Uniform Consistency: We have that

(a) ānσ̄n = o(1) and (b) sup
v∈V

∣∣∣∣ sn(v)σn(v)
− 1

∣∣∣∣= oPn

(
δn

ān + ��n

)
�

where ��n ↗ ∞ is a sequence of constants defined below.

In what follows, we let

�n := logn and ��n := log�n�

but it should be noted that �n can be replaced by other slowly increasing se-
quences.

3.2. The Inference and Estimation Strategy

For any compact subset V ⊆ V and γ ∈ (0�1), define

κn�V(γ) :=Qγ

(
sup
v∈V

Z∗
n(v)

)
�

The following result is useful for establishing validity of our inference pro-
cedure.

LEMMA 1—Inference Concentrates on a Neighborhood Vn of V0: Under
Conditions C.1–C.4,

Pn

(
sup
v∈V

θn0 − θ̂n(v)

sn(v)
≤ x

)
≥ Pn

(
sup
v∈Vn

Z∗
n(v)≤ x

)
− o(1)
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uniformly in x ∈ [0�∞), where

Vn := {
v ∈ V :θn(v)≤ θn0 + κnσn(v)

}
for κn := κn�V

(
γ′
n

)
�(3.3)

where γ′
n is any sequence such that γ′

n ↗ 1 with κn ≤ ān + η(��n + C ′)/ān for
some constant C ′ > 0.

Thus, with probability converging to 1, the inferential process “concentrates”
on a neighborhood of V0 given by Vn. The “size” of the neighborhood is de-
termined by κn, a high quantile of supv∈V Z

∗
n(v), which summarizes the maxi-

mal one-sided estimation error over V . We use this to construct half-median-
unbiased estimators for θn0 as well as one-sided interval estimators for θn0 with
correct asymptotic level, based on analytical and simulation methods for ob-
taining critical values proposed below.

REMARK 1—Sharp Concentration of Inference: In general, it is not possible
for the inferential processes to concentrate on subsets smaller than Vn. How-
ever, as shown, in Section 3.6, in some special cases (e.g., when V0 is a well
identified singleton), the inference process will, in fact, concentrate on V0. In
this case, our simulation-based construction will automatically adapt to deliver
median-unbiased estimators for θn0 as well as one-sided interval estimators for
θn0 with exact asymptotic size. Indeed, in the special but extremely important
case of V0 being singleton, we can achieve

Pn

(
sup
v∈Vn

Z∗
n(v) > x

)
= P

(
N(0�1) > x

)− o(1)

under some regularity conditions. In this case, our simulation-based procedure
will automatically produce a critical value that approaches the pth quantile of
the standard normal, delivering asymptotically exact inference.

Our construction relies first on an auxiliary critical value kn�V(γn), chosen so
that wp → 1,

kn�V(γn)≥ κn�V
(
γ′
n

)
�(3.4)

where we set γn := 1 − 0�1/�n ↗ 1 and γn ≥ γ′
n = γn − o(1). This critical value

is used to obtain a preliminary set estimator

V̂n =
{
v ∈ V : θ̂n(v)≤ inf

ṽ∈V

(
θ̂n(ṽ)+ kn�V(γn)sn(ṽ)

)+ 2kn�V(γn)sn(v)
}
�(3.5)

The set estimator V̂n is then used in the construction of the principal critical
value kn�V̂n(p), p≥ 1/2, where we require that wp → 1,

kn�V̂n(p)≥ κn�Vn
(
p− o(1)

)
�(3.6)
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The principal critical value is fundamental to our construction of confidence
regions and estimators, which we now define.

DEFINITION 1—Generic Interval and Point Estimators: Let p ≥ 1/2. Then
our interval estimator takes the form

θ̂n0(p)= inf
v∈V

[
θ̂n(v)+ kn�V̂n(p)sn(v)

]
�(3.7)

where the half-median-unbiased estimator corresponds to p= 1/2.

The principal and auxiliary critical values are constructed below so as to sat-
isfy (3.4) and (3.6) using either analytical or simulation methods. As a conse-
quence, we show in Theorems 1 and 2 that

Pn

{
θn0 ≤ θ̂n0(p)

}≥ p− o(1)(3.8)

for any fixed 1/2 ≤ p< 1. The construction relies on the new set estimator V̂n,
which we call an adaptive inequality selector (AIS), since it uses the problem-
dependent cutoff kn�V(γn), which is a bound on a high quantile of supv∈V Z

∗
n(v).

The analysis therefore must take into account the moderate deviations (tail
behavior) of the latter.

Before proceeding to the details of its construction, we note that the argu-
ment for establishing the coverage results and analyzing power properties of
the procedure depends crucially on the result (proven in Lemma 2 below)

Pn{Vn ⊆ V̂n ⊆ V n} → 1�

where

V n := {
v ∈ V :θn(v)≤ θn0 + κ̄nσ̄n

}
for κ̄n := 7(ān +η��n/ān)�(3.9)

where η > 0 is defined by Condition C.3. Thus, the preliminary set estimator
V̂n is sandwiched between two deterministic sequences of sets, facilitating the
analysis of its impact on the convergence of θ̂n0(p) to θn0.

3.3. Analytical Method and Its Theory

Our first construction is quite simple and demonstrates the main—though
not the finest—points. This construction uses the majorizing variable E that
appears in Condition C.3.

DEFINITION 2—Analytical Method for Critical Values: For any compact set
V and any p ∈ (0�1), we set

kn�V(p)= an(V)+ c(p)/an(V)�(3.10)
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where c(p) = Qp(E) is the pth quantile of the majorizing variable E defined
in Condition C.3, where for any fixed p ∈ (0�1), we require that V �→ kn�V(p)
is weakly monotone increasing in V for sufficiently large n.

The first main result is as follows.

THEOREM 1—Analytical Inference, Estimation, and Power Under Condi-
tions C.1–C.4: Suppose Conditions C.1–C.4 hold. Consider the interval estima-
tor given in Definition 1 with critical value function given in Definition 2. Then,
for a given p ∈ [1/2�1), the following statements hold:

(i) The interval estimator has asymptotic level p:

Pn

{
θn0 ≤ θ̂n0(p)

}≥ p− o(1)�

(ii) The estimation risk is bounded by, wp→ 1 under Pn,

∣∣θ̂n0(p)− θn0

∣∣≤ 4σ̄n

(
an(V n)+ OPn(1)

an(V n)

)
�Pn σ̄nān�

(iii) Hence, any alternative θna > θn0 such that

θna ≥ θn0 + 4σ̄n

(
an(V n)+ μn

an(V n)

)
� μn →Pn ∞�

is rejected with probability converging to 1 under Pn.

Thus, (−∞� θ̂n0(p)] is a valid one-sided interval estimator for θn0. Moreover,
θ̂n0(1/2) is a half-median-unbiased estimator for θn0 in the sense that

lim inf
n→∞

Pn

[
θn0 ≤ θ̂n0(1/2)

]≥ 1/2�

The rate of convergence of θ̂n0(p) to θn0 is bounded above by the uniform rate
σ̄nān for estimation of the bounding function v �→ θn(v). This implies that the
test of H0 :θn0 = θna that rejects if θna > θ̂n0(p) asymptotically rejects all local
alternatives that are more distant16 than σ̄nān, including fixed alternatives as a
special case. In Section 4 below, we show that in parametric cases, this results
in power against n−1/2 local alternatives. For series estimators, ānσ̄n is propor-
tional to (logn)c

√
K/n, where c is some positive constant and K → ∞ is the

number of series terms. For kernel-type estimators of bounding functions, the
rate ānσ̄n is proportional to (logn)c/

√
nhd , where c is some positive constant

and h is the bandwidth, assuming some undersmoothing is done. For exam-
ple, if the bounding function is s-times differentiable, σ̄n can be made close

16Here and below we ignore various constants appearing in front of terms like σ̄nān.
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to (logn/n)s/(2s+d) apart from some undersmoothing factor by considering a
local polynomial estimator; see Stone (1982). For both series and kernel-type
estimators, we show below that ān can be bounded by

√
logn.

3.4. Simulation-Based Construction and Its Theory

Our main and preferred approach is based on the simple idea of simulating
quantiles of relevant statistics.

DEFINITION 3—Simulation Method for Critical Values: For any compact set
V ⊆ V , we set

kn�V(p)=Qp

(
sup
v∈V

Z

n(v)

∣∣Dn

)
�(3.11)

We have the following result for simulation inference, analogous to that ob-
tained for analytical inference.

THEOREM 2—Simulation Inference, Estimation, and Power Under Condi-
tions C.1–C.4: Suppose Conditions C.1–C.4 hold. Consider the interval estimator
given in Definition 1 with the critical value function specified in Definition 3. Then,
for a given p ∈ [1/2�1), the following statements hold:

(i) The interval estimator has asymptotic level p:

Pn

{
θn0 ≤ θ̂n0(p)

}≥ p− o(1)�

(ii) The estimation risk is bounded by, wp→ 1 under Pn,

∣∣θ̂n0(p)− θn0

∣∣≤ 4σ̄n

(
an(V n)+ OPn(1)

an(V n)

)
�Pn σ̄nān�

(iii) Any alternative θna > θn0 such that

θna ≥ θn0 + 4σ̄n

(
an(V n)+ μn

an(V n)

)
� μn →Pn ∞�

is rejected with probability converging to 1 under Pn.

3.5. Properties of the Set Estimator V̂n

In this section we establish some containment properties for the estimator
V̂n. Moreover, these containment properties imply a useful rate result under
the following condition:
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CONDITION V—Degree of Identifiability for V0: There exist constants ρn > 0
and cn > 0, possibly dependent on n, and a positive constant δ, independent of
n, such that

θn(v)− θn0 ≥ (
cnd(v�V0)

)ρn ∧ δ� ∀v ∈ V �(3.12)

We say (cn�1/ρn) characterize the degree of identifiability of V0, as these
parameters determine the rate at which V0 can be consistently estimated. Note
that if V0 = V , then this condition holds with cn = ∞ and ρn = 1, where we
adopt the convention that 0 · ∞ = 0.

We have the following result, whose first part we use in the proof of The-
orems 1 and 2 above, and whose second part we use below in the proof of
Theorem 3.

LEMMA 2—Estimation of Vn and V0: Suppose Conditions C.1–C.4 hold.
(i) Containment: Then wp→ 1, for either analytical or simulation methods,

Vn ⊆ V̂n ⊆ V n

for Vn defined in (3.3) with γ′
n = γn − o(1) and V n defined in (3.9).

(ii) Rate: If also Condition V holds and κ̄nσ̄n → 0, then wp→ 1,

dH(V̂n� V0) ≤ dH(V̂n� Vn)+ dH(Vn�V0)

≤ dH(V n�Vn)+ dH(Vn�V0)≤ rn := 2(κ̄nσ̄n)1/ρn/cn�

3.6. Automatic Sharpness of Simulation Construction

When the penultimate process Z∗
n does not lose equicontinuity too fast and

when V0 is sufficiently well identified, our simulation-based inference proce-
dure becomes sharp in the sense of not only achieving the right level, but in fact
automatically achieving the right size. In such cases, we typically have some
small improvements in the rates of convergence of the estimators. The most
important case covered is that where V0 is singleton (or a finite collection of
points) and θn is locally quadratic, that is, ρn ≥ 2 and cn ≥ c > 0 for all n. These
sharp situations occur when the inferential process concentrates on V0 and not
just on the neighborhood Vn, in the sense described below. For this to happen,
we impose the following condition.

CONDITION S—Equicontinuity Radii Are not Smaller Than rn: When Con-
dition V holds, the scaled penultimate process ānZ∗

n has an equicontinuity ra-
dius ϕn that is no smaller than rn := 2(κ̄nσ̄n)1/ρn/cn, namely

sup
‖v−v′‖≤ϕn

ān
∣∣Z∗

n(v)−Z∗
n

(
v′)∣∣= oPn(1)� rn ≤ ϕn�

When Z∗
n is Donsker, that is, asymptotically equicontinuous, this condition

holds automatically, since, in this case, ān ∝ 1 and for any o(1) term, equicon-
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tinuity radii obey ϕn = o(1), so that consistency rn = o(1) is sufficient. When
Z∗
n is not Donsker, its finite-sample equicontinuity properties decay as n→ ∞,

with radii ϕn characterizing the decay. However, as long as ϕn is not smaller
than rn, we have just enough finite-sample equicontinuity left to achieve the
following result.

LEMMA 3—Inference Sometimes Concentrates on V0: Suppose Conditions
C.1–C.4, S, and V hold. Then,

Pn

(
sup
v∈V

θn0 − θ̂n(v)

sn(v)
≤ x

)
= Pn

(
sup
v∈V0

Z∗
n(v)≤ x

)
+ o(1)�

Under the stated conditions, our inference and estimation procedures auto-
matically become sharp in terms of size and rates.

THEOREM 3—Sharpness of Simulation Inference: Suppose Conditions C.1–
C.4, S, and V hold. Consider the interval estimator given in Definition 1 with the
critical value function specified in Definition 3. Then, for a given p ∈ [1/2�1), the
following statements hold:

(i) The interval estimator has asymptotic size p:

Pn

{
θn0 ≤ θ̂n0(p)

}= p+ o(1)�

(ii) Its estimation risk is bounded by, wp→ 1 under Pn,∣∣θ̂n0(p)− θn0

∣∣≤ 4σ̄n

(
an(V0)+ OPn(1)

an(V0)

)
�Pn σ̄nan(V0)�

(iii) Any alternative θna > θn0 such that

θna ≥ θn0 + 4σ̄n

(
an(V0)+ μn

an(V0)

)
� μn →Pn ∞�

is rejected with probability converging to 1 under Pn.

4. INFERENCE ON INTERSECTION BOUNDS IN LEADING CASES

4.1. Parametric Estimation of Bounding Function

We now show that the above conditions apply to various parametric esti-
mation methods for v �→ θn(v). This is an important practical, and indeed
tractable, case. The required conditions cover standard parametric estimators
of bounding functions such as least squares, quantile regression, and other es-
timators.

CONDITION P—Finite-Dimensional Bounding Function: We have that
(i) θn(v) := θn(v�βn), where V × B �→ θn(v�β) is a known function param-
eterized by finite-dimensional vector β ∈ B, where V is a compact subset of R

d
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and B is a subset of R
k, where the sets do not depend on n. (ii) The function

(v�β) �→ pn(v�β) := ∂θn(v�β)/∂β is uniformly Lipschitz with Lipschitz coef-
ficient Ln ≤L, where L is a finite constant that does not depend on n. (iii) An
estimator β̂n is available such that

Ω−1/2
n

√
n(β̂n −βn)= Nk + oPn(1)� Nk =d N(0� Ik)�

that is, Nk is a random k-vector with the multivariate standard normal distri-
bution. (iv) ‖pn(v�βn)‖ is bounded away from zero, uniformly in v and n. The
eigenvalues of Ωn are bounded from above and away from zero, uniformly in
n. (v) There is also a consistent estimator Ω̂n such that ‖Ω̂n −Ωn‖ =OPn(n

−b)
for some constant b > 0, independent of n.

EXAMPLE 1—A Saturated Model: As a simple, but relevant example we
consider the following model. Suppose that v takes on a finite set of values,
denoted 1� � � � �k, so that θn(v�β)=∑k

j=1βj1(v= j). Suppose first that Pn = P
is fixed, so that βn = β0, a fixed value. Condition P(ii) and the boundedness re-
quirement of P(iv) follow from ∂θn(v�β)/∂βj = 1(v= j) for each j = 1� � � � �k.
Condition P(v) applies to many estimators. Then if the estimator β̂ satisfies
Ω−1/2√n(β̂−β0)→d N(0� Ik), where Ω is positive definite, the strong approx-
imation in Condition P(iii) follows from Skorohod’s theorem and Lemma 9.17

Suppose next that Pn and the true value βn = (βn1� � � � �βnk)
′ change with n.

Then if

Ω−1/2
n

√
n(β̂n −βn)= 1√

n

n∑
i=1

ui�n + oPn(1)�

with {ui�n} i.i.d. vectors with mean zero and variance matrix Ik for each n, and
E‖ui�n‖2+δ bounded uniformly in n for some δ > 0, then Ω−1/2

n

√
n(β̂n −βn)→d

N(0� Ik), and again Condition P(iii) follows from Skorohod’s theorem and
Lemma 9.

LEMMA 4—Conditions P and V imply Conditions C.1–C.4 and S: Condi-
tion P implies Conditions C.1–C.4, where, for pn(v�β) := ∂θn(v�β)

∂β
,

Zn(v)= θn(v)− θ̂n(v)

σn(v)
� Z∗

n(v)= pn(v�βn)
′Ω1/2

n

‖pn(v�βn)′Ω1/2
n ‖ Nk�

Z

n(v)= pn(v� β̂n)

′Ω̂1/2
n

‖pn(v� β̂n)′Ω̂1/2
n ‖

Nk� σn(v)= ∥∥n−1/2pn(v�βn)
′Ω1/2

n

∥∥�
17See Theorem 1.10.3 of van der Vaart and Wellner (1996, p. 58) and the subsequent historical

discussion attributing the earliest such results to Skorohod (1956), later generalized by Wichura
and Dudley.
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sn(v)= ‖n−1/2pn(v� β̂n)
′Ω̂1/2

n ‖� δn = o(1)� ān � 1� σ̄n �
√

1/n�

an(V)= (
2
√

log
{
C
(
1 +C ′Ln diam(V)

)d})∨ (1 + √
d)�

for some positive constants C and C ′, and P[E > x] = exp(−x/2). Furthermore,
if also Condition V holds and c−1

n (��n/
√
n)1/ρn = o(1), then Condition S holds.

The following theorem is an immediate consequence of Lemma 4 and The-
orems 1, 2, and 3.

THEOREM 4—Estimation and Inference With Parametrically Estimated
Bounding Functions: Suppose Condition P holds and consider the interval esti-
mator θ̂n0(p) given in Definition 1 with simulation-based critical values specified
in Definition 3 for the simulation processZ


n specified above. (a) Then (i) Pn[θn0 ≤
θ̂n0(p)] ≥ p − o(1), (ii) |θn0 − θ̂n0(p)| = OPn(

√
1/n), and (iii) Pn(θn0 +

μn
√

1/n ≥ θ̂n0(p)) → 1 for any μn →Pn ∞. (b) If Condition V holds with
cn ≥ c > 0 and ρn ≤ ρ <∞, then Pn[θn0 ≤ θ̂n0(p)] = p+ o(1).

We next provide two examples that generalize the simple, but well used,
saturated example of Example 1 to more substantive cases. Aside from being
practically relevant due to the common use of parametric restriction in appli-
cations, these examples offer a natural means of transition to the next section,
which deals with series estimation and which can be viewed as parametric esti-
mation with parameters of increasing dimension and vanishing approximation
errors.

EXAMPLE 2—Linear Bounding Function: Suppose that θn(v�βn) =
pn(v)

′βn, where pn(v)
′β : V × B �→ R. Suppose that (a) v �→ pn(v) is Lips-

chitz with Lipschitz coefficient Ln ≤L for all n, with the first component equal
to 1, (b) there is an estimator available that is asymptotically linear,

Ω−1/2
n

√
n(β̂n −βn)= 1√

n

n∑
i=1

ui�n + oPn(1)�

with {ui�n} i.i.d. vectors with mean zero and variance matrix Ik for each n and
E‖ui�n‖2+δ bounded uniformly in n for some δ > 0, and (c) Ωn has eigenvalues
bounded away from zero and from above. These conditions imply Condition
P(i)–(iv). Indeed, Conditions P(i), (ii), and (iv) hold immediately, while Con-
dition P(iii) follows from the Lindeberg–Feller central limit theorem (CLT),
which implies that under Pn,

Ω−1/2
n

√
n(β̂n −βn)→d N(0� Ik)�

and the strong approximation follows by the Skorohod representation and
Lemma 9 by suitably enriching the probability space if needed. Note that if
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θn(v�βn) is the conditional expectation of Yi given Vi = v, then β̂n can be ob-
tained by the mean regression of Yi on pn(Vi), i = 1� � � � � n; if θn(v�βn) is the
conditional u-quantile of Yi given Vi = v, then β̂n can be obtained by the u-
quantile regression of Yi on pn(Vi), i = 1� � � � � n. Regularity conditions that
imply the conditions stated above can be found in, for example, White (1984)
and Koenker (2005). Finally estimators of Ωn depend on the estimator of βn:
for mean regression, the standard estimator is the Eicker–Huber–White esti-
mator; for quantile regression, the standard estimator is Powell’s (1984) esti-
mator. For brevity, we do not restate sufficient conditions for Condition P(v),
but these are readily available for common estimators.

EXAMPLE 3—Conditional Moment Inequalities: This is a generalization of
the previous example where now the bounding function is the minimum of J
conditional mean functions. Referring to the conditional moment inequality
setting specified in Section 2, suppose we have an i.i.d. sample of (Xi�Zi)� i=
1� � � � � n, with support(Zi) = Z ⊆ [0�1]d. Let v = (z� j), where j denotes the
enumeration index for the conditional moment inequality, j ∈ {1� � � � � J}, and
suppose V ⊆ Z × {1� � � � � J}. The parameters J and d do not depend on n.
Hence

θn0 = min
v∈V

θn(v)= min
(z�j)∈V

θn(z� j)�

Suppose that θn(v)= EPn[m(X�μ� j)|Z = z] = b(z)′χn(j) for b : Z �→ R
m, de-

noting some transformation of z, withm independent of n and where χn(j) are
the population regression coefficients in the regression of Y(j) :=m(X�μ� j)
on b(Z)� j = 1� � � � � J, respectively, under Pn. Suppose that the first J0/2 pairs
correspond to moment inequalities generated from moment equalities so that
θn(j)= −θn(j− 1)� j = 2�4� � � � � J0, and so these functions are replicas of each
other up to sign; also note that χn(j) = −χn(j − 1)� j = 2�4� � � � � J0. Then we
can rewrite

θn(v)=EPn

[
m(X�μ� j)|Z = z

]= b(z)′χn(j) := pn(v)
′βn�

βn = (
χn(j)

′� j ∈ J
)′
� J := {2�4� � � � � J0� J0 + 1� J0 + 2� � � � � J}′�

where βn is a K-vector of regression coefficients, and pn(v) is a K-vector such
that pn(z� j)= [0′

m� � � � �0′
m� (−1)j+1b′

m(z)�0′
m� � � � �0′

m]′ with b′
m(z) appearing in

the �j/2�th block for 1 ≤ j ≤ J0 and pn(z� j)= [0′
m� � � � �0′

m�b
′
m(z)�0′

m� � � � �0′
m]′

with b(z) appearing in the jth block for J0 + 1 ≤ j ≤ J, where 0m is an m-
dimensional vector of zeroes.18

We impose the following conditions:
(a) b(z) includes constant 1;

18Note the absence of χn(j) for odd j up to J0 in the definition of the coefficient vector βn.
This is required to enable nonsingularity of EPn [εiε′

i|Zi = z]. Imposing nonsingularity simplifies
the proofs, and is not needed for practical implementation.
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(b) z �→ b(z) has Lipschitz coefficient bounded above by L;
(c) for Yi = (Yi(j)� j ∈ J )′ and for εi := Yi −EPn[Yi|Zi], the eigenvalues of

EPn[εiε′
i|Zi = z] are bounded away from zero and from above, uniformly in

z ∈ Z and n;
(d) Q = EPn[b(Zi)b(Zi)

′] has eigenvalues bounded away from zero and
from above, uniformly in n;

(e) EPn‖b(Zi)‖4 and EPn‖εi‖4 are bounded from above uniformly in n.
Then it follows from, for example, White (1984) that for χ̂n(j) denoting the

ordinary least squares estimator obtained by regressing Yi(j)� i = 1� � � � � n, on
b(Zi)� i= 1� � � � � n,

√
n
(
χ̂n(j)−χn(j)

)=Q−1 1√
n

n∑
i=1

b(Zi)εi(j)+ oPn(1)� j ∈ J �

so that

√
n(β̂n −βn)= (I|J | ⊗Q)−1 1√

n

n∑
i=1

(
I|J | ⊗ b(Zi)

)
εi︸ ︷︷ ︸

ui

+oPn(1)�

By conditions (c) and (d), EPn[uiu′
i] and Q have eigenvalues bounded away

from zero and from above, so the same is true of Ωn = (I|J | ⊗Q)−1EPn[uiu′
i] ×

(I|J | ⊗ Q)−1. These conditions verify Condition P(i), (ii), and (iv). Applica-
tion of the Lindeberg–Feller CLT, Skorohod’s theorem, and Lemma 9 verifies
Condition P(iii). By the argument given in Chapter VI of White (1984), Con-
dition P(v) holds for the standard analog estimator for Ωn,

Ω̂n = (I|J | ⊗ Q̂)−1
En

[
ûiû

′
i

]
(I|J | ⊗ Q̂)−1�

where Q̂ = En[b(Zi)b(Zi)
′] and ûi = (I|J | ⊗ b(Zi))ε̂i, with ε̂i(j) = Yi(j) −

b(Zi)
′χ̂n(j) and ε̂i = (ε̂i(j)� j ∈ J )′.

4.2. Nonparametric Estimation of θn(v) via Series

Series estimation is effectively like parametric estimation, but the dimension
of the estimated parameter tends to infinity and bias arises due to approxima-
tion based on a finite number of basis functions. If we select the number of
terms in the series expansion so that the estimation error is of larger magni-
tude than the approximation error, that is, if we undersmooth, then the analysis
closely mimics the parametric case.

CONDITION NS: The function v �→ θn(v) is continuous in v. The series
estimator θ̂n(v) has the form θ̂(v) = pn(v)

′β̂n, where pn(v) := (pn�1(v)� � � � �
pn�Kn(v))

′ is a collection of Kn continuous series functions mapping V ⊂ K ⊂
Rd to RKn , and β̂n is a Kn-vector of coefficient estimates and K is a fixed com-
pact set. Furthermore, the following statements hold:
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(i)(a) The estimator satisfies the linearization and strong approximation
condition

θ̂n(v)− θn(v)

‖pn(v)′Ω1/2
n ‖/√n = pn(v)

′Ω1/2
n

‖pn(v)′Ω1/2
n ‖ Nn +Rn(v)�

where

Nn =d N(0� IKn)� sup
v∈V

∣∣Rn(v)
∣∣= oPn(1/ logn)�

(b) The matrices Ωn are positive definite, with eigenvalues bounded from
above and away from zero, uniformly in n. Moreover, there are sequences of
constants ζn and ζ ′

n such that 1 ≤ ζ ′
n � ‖pn(v)‖ ≤ ζn uniformly for all v ∈ V and√

ζ2
n logn/n→ 0, and ‖pn(v)−pn(v

′)‖/ζ ′
n ≤Ln‖v− v′‖ for all v� v′ ∈ V , where

logLn � logn uniformly in n.
(ii) There exists Ω̂n such that ‖Ω̂n −Ωn‖ = OPn(n

−b), where b > 0 is a con-
stant.

Condition NS is not primitive, but reflects the functionwise large sample
normality of series estimators. It requires that the studentized nonparamet-
ric process is approximated by a sequence of Gaussian processes, which take
a very simple intuitive form, rather than by a fixed single Gaussian process.
Indeed, the latter would be impossible in nonparametric settings, since the se-
quence of Gaussian processes is not asymptotically tight. Note also that the
condition implicitly requires that some undersmoothing takes place so that the
approximation error is negligible relative to the sampling error. We provide
primitive conditions that imply Condition NS(i) in three examples presented
below. In particular, we show that the asymptotic linearization for β̂n − βn,
which is available from the literature on series regression (e.g., from Andrews
(1991) and Newey (1997)), and the use of Yurinskii’s (1977) coupling imply
Condition NS(i). This result could be of independent interest, although we
only provide sufficient conditions for the strong approximation to hold.

Note that under Condition NS, the uniform rate of convergence of θ̂n(v) to
θn(v) is given by

√
ζ2
n/n

√
logn→ 0� where ζn ∝ √

Kn for standard series terms
such as B-splines or trigonometric series.

LEMMA 5—Condition NS Implies Conditions C.1–C.4: Condition NS implies
Conditions C.1–C.4 with

Zn(v)= θn(v)− θ̂n(v)

σn(v)
� Z∗

n(v)= pn(v)
′Ω1/2

n

‖pn(v)′Ω1/2
n ‖ Nn�

Z

n(v)= pn(v)

′Ω̂1/2
n

‖pn(v)′Ω̂1/2
n ‖

Nn� σn(v)= ∥∥n−1/2pn(v)
′Ω1/2

n

∥∥�
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sn(v)= ∥∥n−1/2pn(v)
′Ω̂1/2

n

∥∥� δn = 1/ logn�

ān �
√

logn� σ̄n �
√
ζ2
n/n�

an(V)= (
2
√

log
{
C
(
1 +C ′Ln diam(V)

)d})∨ (1 + √
d)

for some constants C and C ′, where diam(V) denotes the diameter of the set V
and P[E > x] = exp(−x/2)�

REMARK 2: Lemma 5 verifies the main conditions, Conditions C.1–C.4.
These conditions enable construction of simulated or analytical critical values.
For the latter, the pth quantile of E is given by c(p) = −2 log(1 − p), so we
can set

kn�V(p)= an(V)− 2 log(1 −p)/an(V)�(4.1)

where

an(V)= (
2
√

log
{
�n
(
1 + �nLn diam(V)

)d})
(4.2)

is a feasible scaling factor that bounds the scaling factor in the statement of
Lemma 5, at least for all large n. Here, all unknown constants have been re-
placed by slowly growing numbers �n such that �n > C ∨ C ′ for all large n.
Note also that V �→ kn�V(p) is monotone in V for all sufficiently large n, as
required in the analytical construction given in Definition 2. A sharper ana-
lytical approach can be based on Hotelling’s tube method; for details, refer to
Chernozhukov, Lee, and Rosen (2009). That approach is tractable for the case
of d = 1, but does not immediately extend to d > 1. Note that the simulation-
based approach is effectively a numeric version of the exact version of the tube
formula and is less conservative than using simplified tube formulas.

LEMMA 6—Condition NS Implies Condition S in Some Cases: Suppose
Condition NS holds. Then (i) the radius ϕn of equicontinuity of Z∗

n obeys

ϕn ≤ o(1) ·
(

1

Ln

√
logn

)

for any o(1) term. (ii) If Condition V holds and(√
ζ2
n

n
logn

)1/ρn

c−1
n = o

(
1

Ln

√
logn

)
�(4.3)

then Condition S holds. (iii) If V0 is singleton and (4.3) holds, ρn ≤ 2 and cn ≥
c > 0 for all n, then an(V0)∝ 1 and (4.3) reduces to

L4
nKn log3 n/n→ 0�
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The following theorem is an immediate consequence of Lemmas 5 and 6 and
Theorems 1, 2, and 3.

THEOREM 5—Estimation and Inference With Series-Estimated Bounding
Functions: Suppose Condition NS holds and consider the interval estimator
θ̂n0(p) given in Definition 1 with either analytical critical value c(p)= −2 log(1−
p) or simulation-based critical values from Definition 3 for the simulation pro-
cess Z


n above. (a) Then (i) Pn[θn0 ≤ θ̂n0(p)] ≥ p − o(1), (ii) |θn0 − θ̂n0(p)| =
OPn(

√
logn

√
ζ2
n/n), and (iii) Pn(θn0 + μn

√
logn

√
ζ2
n/n ≥ θ̂n0(p)) → 1 for any

μn →Pn ∞. (b) Moreover, for the simulation-based critical values, if Condition V
and relation (4.3) hold, then (i) Pn[θn0 ≤ θ̂n0(p)] = p−o(1), (ii) |θn0 − θ̂n0(p)| =
OPn(

√
ζ2
n/n), and (iii) Pn(θn0 +μn

√
ζ2
n/n≥ θ̂n0(p))→ 1 for any μn →Pn ∞.

We next present some examples with primitive conditions that imply Condi-
tion NS.

EXAMPLE 4—Bounding Function is Conditional Quantile: Suppose that
θn(v) :=QYi |Vi [τ|v] is the τth conditional quantile of Yi given Vi under Pn, as-
sumed to be a continuous function in v. Suppose we estimate θn(v)with a series
estimator. There is an i.i.d. sample (Yi�Vi)� i = 1� � � � � n, with support(Vi) ⊆
[0�1]d for each n, that is defined on a probability space equipped with prob-
ability measure Pn. Suppose that the intersection region of interest is V ⊆
support(Vi). Here the index d does not depend on n, but all other parame-
ters, unless stated otherwise, can depend on n. Then θn(v)= pn(v)

′βn+An(v),
where pn : [0�1]d �→ R

Kn are the series functions, βn is the quantile regression
coefficient in the population, An(v) is the approximation error, and Kn is the
number of series terms that depend on n. Let C be a positive constant.

We impose the following technical conditions to verify Conditions NS(i) and
NS(ii):

Uniformly in n:
(i) pn are either B-splines of a fixed order or trigonometric series terms

or any other terms pn = (pn1� � � � �pnKn)
′ such that ‖pn(v)‖ � ζn = √

Kn for all
v ∈ support(Vi), ‖pn(v)‖ � ζ ′

n ≥ 1 for all v ∈ V , and log lip(pn)� logKn;
(ii) the mapping v �→ θn(v) is sufficiently smooth, namely supv∈V |An(v)| �

K−s
n for some s > 0;
(iii) limn→∞(logn)cK−s+1

n = 0 and limn→∞(logn)c
√
nK−s

n /ζ
′
n = 0 for each

c > 0;
(iv) eigenvalues of �n = EPn[pn(Vi)pn(Vi)′] are bounded away from zero

and from above;
(v) fYi |Vi(θn(v)|v) is bounded uniformly over v ∈ V away from zero and

from above;
(vi) limn→∞K5

n(logn)c/n= 0 for each c > 0;
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(vii) the restriction on the bandwidth sequence in Powell’s estimator Q̂n

of Qn =EPn[fYi|Vi (θn(Vi)|Vi)pn(Vi)pn(Vi)′] specified in Belloni, Chernozhukov,
and Fernandez-Val (2011) holds.

Suppose that we use the standard quantile regression estimator

β̂n = arg min
b∈RKn

En

[
ρτ
(
Yi −pn(Vi)

′b
)]
�

so that θ̂n(v) = pn(v)
′β̂ for ρτ(u) = (τ − 1(u < 0))u. Then by Belloni, Cher-

nozhukov, and Fernandez-Val (2011), under conditions (i)–(vi), the asymptot-
ically linear representation

√
n(β̂n −βn)=Q−1

n

1√
n

n∑
i=1

pn(Vi)εi︸ ︷︷ ︸
ui

+oPn

(
1

logn

)
�

holds for εi = (τ − 1(wi ≤ τ)), where wi� i = 1� � � � � n, are i.i.d., uniform, and
independent of Vi� i = 1� � � � � n. Note that by conditions (iv) and (v), Sn :=
EPn[uiu′

i] = τ(1 − τ)�n and Qn have eigenvalues bounded away from zero and
from above uniformly in n, and so the same is also true of Ωn = Q−1

n SnQ
−1
n .

Given other restrictions imposed in condition (i), Condition NS(i)(b) is veri-
fied. Next using condition (iv) and others, the strong approximation required
in Condition NS(i)(a) follows by invoking Theorem 7 and Corollary 1 in Sec-
tion 5, which is based on Yurinskii’s coupling. To verify Condition NS(ii), con-
sider the plug-in estimator Ω̂n = Q̂−1

n ŜnQ̂
−1
n , where Q̂n is Powell’s estimator for

Qn and Ŝn = τ(1 − τ) · En[pn(Vi)pn(Vi)]. Then under condition (vii), it follows
from the proof of Theorem 7 in Belloni, Chernozhukov, and Fernandez-Val
(2011) that ‖Ω̂n −Ωn‖ =OPn(n

−b) for some b > 0.

EXAMPLE 5—Bounding Function is Conditional Mean: Now suppose that
θn(v) = EPn[Yi|Vi = v], assumed to be a continuous function with respect to
v ∈ support(Vi), and that the intersection region is V ⊆ support(Vi). Suppose
we are using the series approach to approximating and estimating θn(v). There
is an i.i.d. sample (Yi�Vi)� i = 1� � � � � n, with support(Vi) ⊆ [0�1]d for each n.
Here d does not depend on n, but all other parameters, unless stated otherwise,
can depend on n. Then we have θn(v)= pn(v)

′βn+An(v) for pn : [0�1]d �→ R
Kn

representing the series functions, βn is the coefficient of the best least squares
approximation to θn(v) in the population, and An(v) is the approximation er-
ror. The number of series terms Kn depends on n.

We impose the following technical conditions:
Uniformly in n:

(i) pn are either B-splines of a fixed order or trigonometric series terms
or any other terms pn = (pn1� � � � �pnKn)

′ such that ‖pn(v)‖ � ζn = √
Kn for all

v ∈ support(Vi), ‖pn(v)‖ � ζ ′
n ≥ 1 for all v ∈ V , and log lip(pn)� logKn;
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(ii) the mapping v �→ θn(v) is sufficiently smooth, namely supv∈V |An(v)| �
K−s
n for some s > 0;
(iii) limn→∞(logn)c

√
nK−s

n = 0 for each c > 019;
(iv) for εi = Yi −EPn[Yi|Vi], EPn[ε2

i |Vi = v] is bounded away from zero uni-
formly in v ∈ support(Vi);

(v) eigenvalues of Qn = EPn[pn(Vi)pn(Vi)′] are bounded away from zero
and from above;

(vi) EPn[|εi|4|Vi = v] is bounded from above uniformly in v ∈ support(Vi);
(vii) limn→∞(logn)cK5

n/n= 0 for each c > 0.
We use the standard least squares estimator

β̂n = En

[
pn(Vi)pn(Vi)

′]−1
En

[
pn(Vi)Yi

]
�

so that θ̂n(v)= pn(v)
′βn. Then by Newey (1997), under conditions (i)–(vii), we

have the asymptotically linear representation

√
n(β̂n −βn)=Q−1

n

1√
n

n∑
i=1

pn(Vi)εi︸ ︷︷ ︸
ui

+oPn(1/ logn)�

For details, see Supplemental Material Appendix I. Note that EPn(uiu
′
i) and

Qn have eigenvalues bounded away from zero and from above uniformly in
n, and so the same is also true of Ωn = Q−1

n EPn(uiu
′
i)Q

−1
n . Thus, under con-

dition (i), Condition NS(i)(a) is verified. The strong approximation Condi-
tion NS(i)(a) now follows by invoking Theorem 7 in Section 5. Finally, Newey
(1997) verified that Condition NS(ii) holds for the standard analog estimator
Ω̂n = Q̂−1

n En(ûiû
′
i)Q̂

−1
n for ûi = pn(Vi)(Yi − θ̂n(Vi)) and Q̂n = En[pn(Vi)pn(Vi)′]

under conditions that are implied by those above.
Finally, note that if we had εi ∼N(0�σ2(Vi)), conditional on Vi, we could es-

tablish Condition NS(i) with a much weaker growth restriction than (vii). Thus,
while our use of Yurinskii’s coupling provides concrete sufficient conditions for
strong approximation, the functionwise large sample normality is likely to hold
under weaker conditions in many situations.

EXAMPLE 6—Bounding Function From Conditional Moment Inequalities:
Consider now Example C in Section 2, where now the bounding function is the
minimum of J conditional mean functions. Suppose we have an i.i.d. sample of
(Xi�Zi)� i= 1� � � � � n, with support(Zi)= Z ⊆ [0�1]d , defined on a probability
space equipped with probability measure Pn. Let v = (z� j), where j denotes

19This condition, which is based on Newey (1997), can be relaxed to (logn)cK−s+1
n → 0 and

(logn)c
√
nK−s

n /ζ
′
n → 0 using the recent results of Belloni, Chernozhukov, and Kato (2010) for

least squares series estimators.
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the enumeration index for the conditional moment inequality, j ∈ {1� � � � � J},
and V ⊆ Z × {1� � � � � J}. The parameters J and d do not depend on n. Hence

θn0 = min
v∈V

θn(v)

for θn(v)=EPn[m(Xi�μ� j)|Zi = z], assumed to be a continuous function with
respect to z ∈ Z . Suppose we use the series approach to approximate and esti-
mate θn(z� j) for each j. Then EPn[m(X�μ� j)|z] = bn(z)

′χn(j)+An(z� j) for
bn : [0�1]d �→ R

mn denoting an mn-vector of series functions, χn(j) is the coeffi-
cient of the best least squares approximation to EPn[m(x�μ� j)|z] in the popu-
lation, and An(z� j) is the approximation error. Let J be a subset of {1� � � � � J}
defined as in the parametric Example 3 (to handle inequalities associated with
equalities).

We impose the following conditions:
Uniformly in n:

(i) bn(z) are either B-splines of a fixed order or trigonometric series terms
or any other terms bn(z) = (bn1(z)� � � � � bnmn(z))

′ such that ‖bn(z)‖ � ζn =√
mn for all z ∈ Z , ‖bn(z)‖ � ζ ′

n ≥ 1 for all z ∈ Z , and log lip(bn(z))� logmn;
(ii) the mapping z �→ θn(z� j) is sufficiently smooth, namely supz∈Z |An(z�

j)| �m−s
n for some s > 0, for all j ∈ J ;

(iii) limn→∞(logn)c
√
nm−s

n = 0 for each c > 020;
(iv) for Y(j) :=m(X�μ� j), Yi := (Yi(j)� j ∈ J )′, and εi := Yi −EPn[Yi|Zi],

the eigenvalues of EPn[εiε′
i|Zi = z] are bounded away from zero, uniformly in

z ∈ Z ;
(v) eigenvalues of Qn = EPn[bn(Zi)bn(Zi)

′] are bounded away from zero
and from above;

(vi) EPn[‖εi‖4|Zi = z] is bounded above, uniformly in z ∈ Z ;
(vii) limn→∞m5

n(logn)c/n= 0 for each c > 0.
The above construction implies θn(v)= bn(z)

′χn(j)+An(z� j)=: pn(v)′βn+
An(v) for βn = (χ′

n(j)� j ∈ J )′, where pn(v) and βn are vectors of dimension
Kn := mn × |J |, defined as in parametric Example 3. Consider the standard
least squares estimator β̂n = (χ̂′

n(j)� j ∈ J )′ consisting of |J | least square es-
timators, where χ̂n(j) = En[bn(Zi)bn(Zi)

′]−1
En[bn(Zi)Yi(j)]. Then it follows

from Newey (1997) that for Qn =EPn[bn(Zi)bn(Zi)
′]−1,

√
n
(
χ̂n(j)−χn(j)

) = 1√
n

n∑
i=1

Q−1
n bn(Zi)εi(j)

+ oPn(1/ logn)� j ∈ J �

20See the previous footnote on a possible relaxation of this condition.
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so that

√
n(β̂n −βn)= (I|J | ⊗Qn)

−1 1√
n

n∑
i=1

(
I|J | ⊗ bn(Zi)

)
εi︸ ︷︷ ︸

ui

+oPn(1/ logn)�

By conditions (iv), (v), and (vi), EPn[uiu′
i] and Qn have eigenvalues bounded

away from zero and from above, so the same is true of Ωn = (I|J | ⊗
Qn)

−1EPn[uiu′
i](I|J | ⊗ Qn)

−1. This and condition (i) imply that Condition
NS(i)(b) holds. Application of Theorem 7, based on Yurinskii’s coupling, veri-
fies Condition NS(i)(a). Finally, Condition NS(ii) holds for the standard plug-
in estimator for Ωn, by the same argument as given in the proof of Theorem 2
of Newey (1997).

4.3. Nonparametric Estimation of θn(v) via Kernel Methods

In this section, we provide conditions under which kernel-type estimators
satisfy Conditions C.1–C.4. These conditions cover both standard kernel esti-
mators as well as local polynomial estimators.

CONDITION NK: Let v = (z� j) and V ⊆ Z × {1� � � � � J}, where Z is a com-
pact convex set that does not depend on n. The estimator v �→ θ̂n(v) and the
function v �→ θn(v) are continuous in v. In what follows, let ej denote the
J-vector with jth element 1 and all other elements 0. Suppose that (U�Z)
is a (J + d)-dimensional random vector, where U is a generalized residual
such that E[U |Z] = 0 a.s. and Z is a covariate, the density fn of Z is con-
tinuous and bounded away from zero and from above on Z , uniformly in n,
and the support of U is bounded uniformly in n. K is a twice continuously
differentiable, possibly higher order, product kernel function with support on
[−1�1]d ,

∫
K(u)du= 1, and hn is a sequence of bandwidths such that hn → 0

and nhdn → ∞ at a polynomial rate in n.
(i) We have that uniformly in v ∈ V ,(

nhdn
)1/2(

θ̂n(v)− θn(v)
)= Bn(gv)+ oPn(δn)�

gv(U�Z) := e′
jU

(hdn)
1/2fn(z)

K
(
z−Z

hn

)
�

where Bn is a Pn-Brownian bridge such that v �→ Bn(gv) has continuous sample
paths over V . Moreover, the latter process can be approximated via the Gaus-
sian multiplier method, namely there exist sequences o(δn) and o(1/�n) such
that

Pn

(
sup
v∈V

∣∣Go
n(gv)− B̄n(gv)

∣∣> o(δn)∣∣Dn

)
= oPn(1/�n)
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for some independent (from data) copy v �→ B̄n(gv) of the process v �→ Bn(gv).
Here, G

o
n(gv)= 1√

n

∑n

i=1ηigv(Ui�Zi), where ηi are i.i.d. N(0�1), independent
of the data Dn and of {(Ui�Zi)}ni=1, which are i.i.d. copies of (U�Z). Covariates
{Zi}ni=1 are part of the data, and {Ui}ni=1 are a measurable transformation of
data.

(ii) There exists an estimator z �→ f̂n(z), having continuous sample paths,
such that supz∈Z |f̂n(z)− fn(z)| =OPn(n

−b), and there are estimators Ûi of gen-
eralized residuals such that max1≤i≤n ‖Ûi −Ui‖ = OPn(n

−b̃) for some constants
b > 0 and b̃ > 0.

Condition NK(i) is a high-level condition that captures the large sample
Gaussianity of the entire estimated function where estimation is done via a
kernel or local method. Under some mild regularity conditions, specifically
those stated in Appendix G, Condition NK(i) follows from the Rio–Massart
coupling (Rio (1994) and Massart (1989)) and from the Bahadur expansion
holding uniformly in v ∈ V :(

nhdn
)1/2(

θ̂n(v)− θn(v)
)= Gn(gv)+ oPn(δn)�

Uniform Bahadur expansions have been established for a variety of local es-
timators; see, for example, Masry (1996) and Kong, Linton, and Xia (2010),
including higher order kernel and local polynomial estimators. It is possible
to use more primitive sufficient conditions stated in Appendix G based on the
Rio–Massart coupling, but these conditions are merely sufficient and other
primitive conditions may also be adequate. Our general argument, however,
relies only on validity of Condition NK(i).

For simulation purposes, we define

G
o
n(ĝv)= 1√

n

n∑
i=1

ηiĝv(Ui�Zi)�

ηi i.i.d. N(0�1)� independent of the data Dn�

ĝv(Ui�Zi)= e′
jÛi

(hdn)
1/2f̂n(z)

K
(
z−Zi

hn

)
�

LEMMA 7—Condition NK Implies Conditions C.1–C.4: Condition NK Im-
plies Conditions C.1–C.4 with v= (z� j) ∈ V ⊆ Z × {1� � � � � J},

Zn(v)= θn(v)− θ̂n(v)

σn(v)
� Z∗

n(v)= Bn(gv)√
EPn[g2

v]
� Z


n(v)= G
o
n(ĝv)√
En[ĝ2

v]
�

σ2
n(v)=EPn

[
g2
v

]
/
(
nhdn

)
� s2

n(v)= En

[
ĝ2
v

]
/
(
nhdn

)
� δn = 1/ logn�
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ān �
√

logn� σ̄n �
√

1/
(
nhd

)
�

an(V)=
(

2
√

log
{
C
(
1 +C ′(1 + h−1

n

)
diam(V)

)d})∨ (1 + √
d)�

for some constants C and C ′, where diam(V) denotes the diameter of the set V.
Moreover, P[E > x] = exp(−x/2)�

REMARK 3: Lemma 7 verifies the main conditions, Conditions C.1–C.4.
These conditions enable construction of either simulated or analytical critical
values. For the latter, the pth quantile of E is given by c(p)= −2 log(1 − p),
so we can set

kn�V(p)= an(V)− 2 log(1 −p)/an(V)�(4.4)

where

an(V)=
(

2
√

log
{
�n
(
1 + �n

(
1 + h−1

n

)
diam(V)

)d})
(4.5)

is a feasible version of the scaling factor in which unknown constants have
been replaced by the slowly growing sequence �n. Note that V �→ kn�V(p) is
monotone in V for large n, as required in the analytical construction given in
Definition 2. A sharper analytical approach can be based on Hotelling’s tube
method or on the use of extreme value theory. For details of the extreme value
approach, we refer the reader to Chernozhukov, Lee, and Rosen (2009). Note
that the simulation-based approach is effectively a numeric version of the ex-
act version of the tube formula and is less conservative than using simplified
tube formulas. In Chernozhukov, Lee, and Rosen (2009), we established that
inference based on extreme value theory is valid, but the asymptotic approxi-
mation is accurate only when sets V are “large” and does not seem to provide
an accurate approximation when V is small. Moreover, it often requires a very
large sample size for accuracy even when V is large.

LEMMA 8—Condition NK Implies Condition S in Some Cases: Suppose
Condition NK holds. Then (i) the radius ϕn of equicontinuity of Z∗

n obeys

ϕn ≤ o(1) ·
(

hn√
logn

)

for any o(1) term. (ii) If Condition V holds and(√
logn
nhd

logn
)1/ρn

c−1
n = o

(
hn√
logn

)
�(4.6)

then Condition S holds.
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The following theorem is an immediate consequence of Lemmas 7 and 8 and
Theorems 1, 2, and 3.

THEOREM 6—Estimation and Inference for Bounding Functions Using Lo-
cal Methods: Suppose Condition NK holds and consider the interval estimator
θ̂n0(p) given in Definition 1 with either analytical critical values specified in Re-
mark 3 or simulation-based critical values given in Definition 3 for the simulation
process Z


n specified above. (a) Then (i) Pn[θn0 ≤ θ̂n0(p)] ≥ p− o(1), (ii) |θn0 −
θ̂n0(p)| =OPn(

√
logn/(nhdn)), and (iii) Pn(θn0 +μn

√
logn/(nhdn)≥ θ̂n0(p))→ 1

for any μn →Pn ∞. (b) Moreover, for simulation-based critical values, if Con-
dition V and (4.6) hold, then (i) Pn[θn0 ≤ θ̂n0(p)] = p − o(1), (ii) |θn0 −
θ̂n0(p)| =OPn(

√
1/(nhdn)), and (iii) Pn(θn0 +μn

√
1/(nhdn)≥ θ̂n0(p))→ 1 for any

μn →Pn ∞.

In Appendix F in the Supplemental Material, we provide an example where
the bounding function is obtained from conditional moment inequalities and
where Condition NK holds under primitive conditions. We provide only one
example for brevity, but more examples can be covered as for series estima-
tion in Section 4.2. In Appendix G in the Supplemental Material, we provide
conditions under which the required strong approximation in Condition NK(i)
holds.

5. STRONG APPROXIMATION FOR ASYMPTOTICALLY LINEAR
SERIES ESTIMATORS

In the following theorem, we establish strong approximation for series esti-
mators appearing in the previous section as part of Condition NS(i). In Ap-
pendix I of the Supplemental Material, we demonstrate as a leading example
how the required asymptotically linear representation can be achieved from
primitive conditions for the case of estimation of a conditional mean function.

THEOREM 7—Strong Approximation for Asymptotically Linear Series Esti-
mators: Let (A�A�Pn) be the probability space for each n and let n→ ∞. Let
δn → 0 be a sequence of constants converging to 0 at no faster than a polynomial
rate in n. (a) Assume the series estimator has the form θ̂n(v) = pn(v)

′β̂n, where
pn(v) := (pn�1(v)� � � � �pn�Kn(v))

′ is a collection of Kn-dimensional approximat-
ing functions such that Kn → ∞ and β̂n is a Kn-vector of estimates. (b) Assume
the estimator β̂n satisfies an asymptotically linear representation around some Kn-
dimensional vector βn,

Ω−1/2
n

√
n(β̂n −βn)= n−1/2

n∑
i=1

ui�n + rn� ‖rn‖ = oPn(δn)�(5.1)
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ui�n� i= 1� � � � � n are independent with(5.2)

EPn[ui�n] = 0� EPn

[
ui�nu

′
i�n

]= IKn�

Δn =
n∑
i=1

E‖ui�n‖3/n3/2 such that KnΔn/δ
3
n → 0�(5.3)

where Ωn is a sequence of Kn ×Kn invertible matrices. (c) Assume the function
θn(v) admits the approximation θn(v) = pn(v)

′βn + An(v), where the approx-
imation error An(v) satisfies supv∈V

√
n|An(v)|/‖gn(v)‖ = o(δn) for gn(v) :=

pn(v)
′Ω1/2

n . Then we can find a random normal vector Nn =d N (0� IKn) such
that ‖Ω−1/2

n

√
n(β̂n −βn)− Nn‖ = oPn(δn) and

sup
v∈V

∣∣∣∣
√
n(θ̂n(v)− θn(v))

‖gn(v)‖ − gn(v)

‖gn(v)‖ Nn

∣∣∣∣= oPn(δn)�

The following corollary covers the cases considered in the examples in the
previous section.

COROLLARY 1—A Leading Case of Influence Function: Suppose the condi-
tions of Theorem 7 hold with ui�n := Ω−1/2

n Q−1
n pn(Vi)εi, where (Vi� εi) are i.i.d.

with EPn[εipn(Vi)] = 0, Sn := EPn[ε2
i pn(Vi)pn(Vi)

′], and Ωn := Q−1
n Sn(Q

−1
n )

′,
where Q−1

n is a nonrandom invertible matrix, and ‖Ω−1/2
n Q−1

n ‖ ≤ τn, EPn[|εi|3|Vi =
v] is bounded above uniformly in v ∈ support(Vi), and EPn[‖pn(Vi)‖3] ≤ CnK

3/2
n .

Then the key growth restriction on the number of series terms KnΔn/δ
3
n → 0 holds

if τ6
nC

2
nKn

5/(nδ6
n)→ 0.

REMARK 4—Applicability: In this paper, δn = 1/ logn. Sufficient conditions
for linear approximation Theorem 7(b) follow from results in the literature
on series estimation, for example, Andrews (1991), Newey (1995, 1997), and
Belloni, Chernozhukov, and Fernandez-Val (2011). See also Chen (2007) and
references therein for a general overview of sieve estimation and recent devel-
opments. The main text provides several examples, including mean and quan-
tile regression, with primitive conditions that provide sufficient conditions for
the linear approximation.

6. IMPLEMENTATION

In Section 6.1, we lay out steps for implementation of parametric and series
estimation of bounding functions, while in Section 6.2, we provide implemen-
tation steps for kernel-type estimation. The end goal in each case is to obtain
estimators θ̂n0(p) that provide bias-corrected estimates or the end points of
confidence intervals, depending on the chosen value of p (e.g., p = 1/2 or
p = 1 − α). As before, we focus here on the upper bound. If instead θ̂n0(p)
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were the lower bound for θ∗, given by the supremum of a bounding function,
the same algorithm could be applied to perform inference on −θ∗, bounded
above by the infimum of the negative of the original bounding function, and
then any inference statements for −θ∗ could trivially be transformed to infer-
ence statements for θ∗. Indeed, any set of lower and upper bounds can be simi-
larly transformed to a collection of upper bounds, and the above algorithm can
be applied to perform inference on θ∗, for example, according to the methods
laid out for inference on parameters bounded by conditional moment inequal-
ities in Section 3.21 Alternatively, if one wishes to perform inference on the
identified set in such circumstances, one can use the intersection of upper and
lower one-sided intervals each based on p̃= (1+p)/2 as an asymptotic level-p
confidence set for ΘI , which is valid by Bonferroni’s inequality.22

6.1. Parametric and Series Estimators

Let βn denote the bounding function parameter vector if parametric esti-
mation is used, while βn denotes the coefficients of the series terms if se-
ries estimation is used, as in Section 4.2. K denotes the dimension of βn
and IK denotes the K-dimensional identity matrix. As in the main text, let
pn(v) = ∂θn(v� β̂n)/∂βn, which are simply the series terms in the case of se-
ries estimation.

ALGORITHM 1—Implementation for Parametric and Series Estimation:
Step 1. Set γ̃n ≡ 1 − 0�1/ logn. Simulate a large number R of draws denoted

Z1� � � � �ZR from the K-variate standard normal distribution N (0� IK).
Step 2. Compute Ω̂n, a consistent estimator for the large sample variance of√
n(β̂n −βn).
Step 3. For each v ∈ V , compute ĝ(v) = pn(v)

′Ω̂1/2
n and set sn(v) = ‖ĝ(v)‖/√

n.
Step 4. Compute

kn�V(γ̃n)= γ̃n-quantile of
{

sup
v∈V

(
ĝ(v)′Zr/

∥∥ĝ(v)∥∥)� r = 1� � � � �R
}
�

and

V̂n =
{
v ∈ V : θ̂n(v)≤ min

v∈V

(
θ̂n(v)+ kn�V(γ̃n)sn(v)

)+ 2kn�V(γ̃n)sn(v)
}
�

21For example, if we have θln(z) ≤ θ∗
n ≤ θun(z) for all z ∈ Z� then we can equivalently write

minz∈Z minj=1�2 gn(θ
∗
n� z� j) ≥ 0� where gn(θ∗

n� z�1) = θun(z) − θ∗
n and gn(θ

∗
n� z�2) = θ∗

n − θln(z).
Then we can apply our method through use of the auxiliary function gn(θn� z� j), in similar fashion
as in Example C with multiple conditional moment inequalities.

22In an earlier version of this paper (Chernozhukov, Lee, and Rosen (2009)), we provided a
different method for inference on a parameter with both lower and upper bounding functions,
which can also be used for valid inference on θ∗.
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Step 5. Compute

kn�V̂n(p)= p-quantile of
{

sup
v∈V̂n

(
ĝ(v)′Zr/

∥∥ĝ(v)∥∥)� r = 1� � � � �R
}
�

and set

θ̂n0(p)= inf
v∈V

[
θ̂n(v)+ kn�V̂n(p)

∥∥ĝ(v)∥∥/√n]�
An important special case of the parametric setup is that where the support

of v is finite, as in Example 1 of Section 4.1, so that V = {1� � � � � J}. In this
case, the algorithm applies with θn(v�βn)=∑J

j=1 1[v= j]βnj , that is, where for

each j, θn(j�βn)= βnj and ĝ(v)= (1[v= 1]� � � � �1[v= J]) · Ω̂1/2
n . Note that this

covers the case where the bounding function is a conditional mean or quan-
tile with discrete conditioning variable, such as conditional mean estimation
with discrete regressors, in which case βnj =E[Y |V = j] can be estimated by a
sample mean.

REMARK 5: In the case of series estimation, if desired, one can bypass sim-
ulation of the stochastic process by instead employing the analytical critical
value in Step 4, kn�V(p) = an(V)− 2 log(1 − p)/an(V) from Remark 2 in Sec-
tion 4.2. This is convenient because it does not involve simulation, though it

requires computation of an(V̂n) = 2
√

log{�n(1 + �nLn diam(V̂n))d}. Moreover,
it could be too conservative in some applications. Thus, we recommend using
simulation, unless the computational cost is too high.

6.2. Kernel-Type Estimators

In this section, we describe the steps for implementation of kernel-type esti-
mators.

ALGORITHM 2—Implementation for Kernel Case:
Step 1. Set γn ≡ 1 − 0�1/ logn. Simulate R × n independent draws from

N(0�1), denoted by {ηir : i= 1� � � � � n� r = 1� � � � �R}, where n is the sample size
and R is the number of simulation repetitions.

Step 2. For each v ∈ V and r = 1� � � � �R, compute G
o
n(ĝv; r) = 1√

n

∑n

i=1ηir ×
ĝv(Ui�Zi)� where ĝv(Ui�Zi) is defined in Section 4.3, that is,

ĝv(Ui�Zi)= e′
jÛi

(hdn)
1/2f̂n(z)

K
(
z−Zi

hn

)
�

Let s2
n(v) = En[ĝ2

v]/(nhdn) and En[ĝ2
v] = n−1

∑n

i=1 ĝ
2
v(Ui�Zi). Here, Ûi is the

kernel-type regression residual and f̂n(z) is the kernel density estimator of
density of Zi.
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Step 3. Compute kn�V(γn) = γn-quantile of {supv∈V G
o
n(ĝv; r)/

√
En[ĝ2

v]� r =
1� � � � �R} and V̂n = {v ∈ V : θ̂n(v)≤ minv∈V(θ̂n(v)+kn�V(γn)sn(v))+2kn�V(γn)×
sn(v)}.

Step 4. Compute kn�V̂n(p) = p-quantile of {supv∈V̂n Go
n(ĝv; r)/

√
En[ĝ2

v]� r =
1� � � � �R} and set θ̂n0(p)= infv∈V [θ̂(v)+ kn�V̂n(p)sn(v)].

REMARK 6: (i) The researcher also has the option of employing an analytical
approximation in place of simulation if desired. This can be done by using
kn�V(p)= an(V)−2 log(1−p)/an(V) from Remark 3, but requires computation
of

an(V̂n)= 2
√

log
{
�n
(
1 + �n

(
1 + h−1

n

)
diam(V̂n)

)d}
�

This approximation could be too conservative in some applications, and thus
we recommend using simulation, unless the computational cost is too high.
(ii) In the case where the bounding function is nonseparable in a parameter
of interest, a confidence interval for this parameter can be constructed as de-
scribed in Section 6.1, where Step 1 is carried out once and Steps 2–4 are ex-
ecuted iteratively on a set of parameter values approximating the parameter
space. However, the bandwidth, f̂n(z), and K( z−Zi

hn
), do not vary across itera-

tions and thus only need to be computed once.

7. MONTE CARLO EXPERIMENTS

In this section, we present results of Monte Carlo experiments to illustrate
the finite-sample performance of our method. We consider a Monte Carlo de-
sign with bounding function

θ(v) :=Lφ(v)�(7.1)

where L is a constant and φ(·) is the standard normal density function.
Throughout the Monte Carlo experiments, the parameter of interest is θ0 =
supv∈V θ(v).

23

7.1. Data-Generating Processes

We consider four Monte Carlo designs (data-generating processes (DGP))
for the sake of illustration.24 In the first Monte Carlo design, labeled DGP1,
the bounding function is completely flat so that V0 = V . In the second design,

23Previous sections focused on θ0 = infv∈V θ(v) rather than θ0 = supv∈V θ(v). This is not a
substantive difference, as for any function θ(·), supv∈V θ(v)= − infv∈V(−θ(v)).

24We consider some additional Monte Carlo designs in Appendix L in the Supplemental Ma-
terial.



INTERSECTION BOUNDS 711

DGP2, the bounding function is nonflat, but smooth in a neighborhood of its
maximizer, which is unique so that V0 is a singleton. In DGP3 and DGP4, the
bounding function is also nonflat and smooth in a neighborhood of its (unique)
maximizer, though relatively peaked. Illustrations of these bounding functions
are provided in Figures S.1 and S.2 in the Supplemental Material. In practice,
the shape of the bounding function is unknown, and the inference and estima-
tion methods we consider do not make use of this information. As we describe
in more detail below, we evaluate the finite-sample performance of our ap-
proach in terms of coverage probability for the true point θ0 and coverage for
a false parameter value θ that is close to but below θ0. We compare the per-
formance of our approach to that of the Cramer–von Mises statistic proposed
by AS. DGP1 and DGP2 in particular serve to effectively illustrate the rela-
tive advantages of both procedures as we describe below. Neither approach
dominates.

For all DGPs, we generated 1000 independent samples from the model

Vi ∼ Unif[−2�2]� Ui = min
{
max{−3�σŨi}�3

}
� and

Yi =Lφ(Vi)+Ui�

where Ũi ∼N(0�1), and L and σ are constants. We set these constants in the
manner

DGP1: L= 0 and σ = 0�1; DGP2: L= 1 and σ = 0�1;
DGP3: L= 5 and σ = 0�1; DGP4: L= 5 and σ = 0�01�

We considered sample sizes n = 500 and n = 1000, and we implemented
both series and kernel-type estimators to estimate the bounding function θ(v)
in (7.1). We set V to be an interval between the 0�05 and 0�95 sample quantiles
of Vi’s so as to avoid undue influence of outliers at the boundary of the support
of Vi. For both types of estimators, we computed critical values via simulation
as described in Section 6, and we implemented our method with both the con-
servative but simple, nonstochastic choice V̂ = V and the set estimate V̂ = V̂n
described in Section 3.2.

7.2. Series Estimation

For basis functions, we use polynomials and cubic B-splines with knots
equally spaced over the sample quantiles of Vi. The number K = Kn of ap-
proximating functions was obtained by the simple rule-of-thumb

K = K̂� K̂ := K̂cv × n−1/5 × n2/7�(7.2)

where a is defined as the largest integer that is smaller than or equal to a, and
K̂cv is the minimizer of the leave-one-out least squares cross-validation score.
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If θ(v) is twice continuously differentiable, then a cross-validated K has the
form K ∝ n1/5 asymptotically. Hence, the multiplicative factor n−1/5 × n2/7 in
(7.2) ensures that the bias is asymptotically negligible from undersmoothing.25

7.3. Kernel-Type Estimation26

We use local linear smoothing since it is known to behave better at the
boundaries of the support than the standard kernel method. We used the ker-
nel function K(s)= 15

16(1 − s2)21(|s| ≤ 1) and the rule-of-thumb bandwidth

h= ĥROT × ŝv × n1/5 × n−2/7�(7.3)

where ŝv is the square root of the sample variance of the Vi and ĥROT, is the rule-
of-thumb bandwidth for estimation of θ(v) with studentized V , as prescribed
in Section 4.2 of Fan and Gijbels (1996). The exact form of ĥROT is

ĥROT = 2�036

⎡
⎢⎢⎢⎢⎣

σ̃2

∫
w0(v)dv

n−1

n∑
i=1

{θ̃(2)(Ṽi)}2w0(Ṽi)

⎤
⎥⎥⎥⎥⎦

1/5

n−1/5�

where Ṽi’s are studentized Vi’s, θ̃(2)(·) is the second-order derivative of the
global quartic parametric fit of θ(v) with studentized Vi, σ̃2 is the simple av-
erage of squared residuals from the parametric fit, w0(·) is a uniform weight
function that has value 1 for any Ṽi that is between the 0�10 and 0�90 sample
quantiles of Ṽi. Again, the factor n1/5 ×n−2/7 is multiplied in (7.3) to ensure that
the bias is asymptotically negligible due to undersmoothing.

7.4. Simulation Results

To evaluate the relative performance of our inference method, we also im-
plemented one of the inference methods proposed by AS, specifically their

25For B-splines, the optimal K̂cv was first selected from the first 5 × n1/5 values starting from 5,
with n1/5 rounded up to the nearest integer. If the upper bound was selected, the cross-validation
(CV) score of K̂cv was compared to that of K̂cv + 1 iteratively, such that K̂cv was increased until
further increments resulted in no improvement. This allows K̂cv ∝ n1/5 and provides a crude check
against the upper bound binding in the CV search, though in these DGPs, results differed little
from those searching over {5�6�7�8�9}, reported in Chernozhukov, Lee, and Rosen (2009). For
polynomials, the CV search was limited to the set {3�4�5�6} due to multicollinearity issues that
arose when too many terms were used.

26Appendices G and H in the Supplemental Material provide strong approximation results and
proofs for kernel-type estimators, including the local linear estimator used here.
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TABLE I

RESULTS FOR MONTE CARLO EXPERIMENTS (CLR WITH SERIES ESTIMATION
USING B-SPLINES)

DGP
Sample

Size
Critical Value

Estimating Vn?
Ave. Smoothing

Parameter
Cov.
Prob.

False Cov.
Prob.

Ave. Argmax Set

Min. Max.

1 500 No 9�610 0�944 0�149 −1�800 1�792
1 500 Yes 9�610 0�944 0�149 −1�800 1�792
1 1000 No 10�490 0�947 0�013 −1�801 1�797
1 1000 Yes 10�490 0�947 0�013 −1�801 1�797
2 500 No 9�680 0�992 0�778 −1�800 1�792
2 500 Yes 9�680 0�982 0�661 −0�762 0�759
2 1000 No 10�578 0�997 0�619 −1�801 1�797
2 1000 Yes 10�578 0�982 0�470 −0�669 0�670
3 500 No 11�584 0�995 0�903 −1�800 1�792
3 500 Yes 11�584 0�984 0�765 −0�342 0�344
3 1000 No 13�378 0�994 0�703 −1�801 1�797
3 1000 Yes 13�378 0�971 0�483 −0�290 0�290
4 500 No 18�802 0�996 0�000 −1�800 1�792
4 500 Yes 18�802 0�974 0�000 −0�114 0�114
4 1000 No 20�572 1�000 0�000 −1�801 1�797
4 1000 Yes 20�572 0�977 0�000 −0�098 0�091

Cramér–von Mises-type (CvM) statistic with both plug-in asymptotic (PA/Asy)
and asymptotic generalized moment selection (GMS/Asy) critical values. For
instrument functions, we used countable hypercubes and the S-function of AS
Section 3.2.27 We set the weight function and tuning parameters for the CvM
statistic exactly as in AS (see AS Section 9). These values performed well in
their simulations, but our Monte Carlo design differs from theirs, and alterna-
tive choices of tuning parameters could perform more or less favorably in our
design. We did not examine sensitivity to the choice of tuning parameters for
the CvM statistic.

The coverage probability (CP) of confidence intervals with nominal level
95% is evaluated for the true lower bound θ0, and false coverage probability
(FCP) is reported at θ = θ0 − 0�02. There were 1000 replications for each ex-
periment. Tables I, II, and III summarize the results. The acronyms CLR and
AS refer to our inference method and that of AS, respectively.

We first consider the performance of our method for DGP1. In terms of
coverage for θ0, both series estimators and the local linear estimator perform
reasonably well, with the series estimators performing best. The polynomial
series and local linear estimators perform somewhat better in terms of false
coverage probabilities, which decrease with the sample size for all estimators.

27All three S-functions in AS Section 3.2 are equivalent in our design, since there is a single
conditional moment inequality.
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TABLE II

RESULTS FOR MONTE CARLO EXPERIMENTS (AS WITH CVM-TYPE STATISTIC)

DGP Sample Size Critical Value Cov. Prob. False Cov. Prob.

1 500 PA/Asy 0�959 0�007
1 500 GMS/Asy 0�955 0�007
1 1000 PA/Asy 0�958 0�000
1 1000 GMS/Asy 0�954 0�000
2 500 PA/Asy 1�000 1�000
2 500 GMS/Asy 1�000 0�977
2 1000 PA/Asy 1�000 1�000
2 1000 GMS/Asy 1�000 0�933
3 500 PA/Asy 1�000 1�000
3 500 GMS/Asy 1�000 1�000
3 1000 PA/Asy 1�000 1�000
3 1000 GMS/Asy 1�000 1�000
4 500 PA/Asy 1�000 1�000
4 500 GMS/Asy 1�000 1�000
4 1000 PA/Asy 1�000 1�000
4 1000 GMS/Asy 1�000 1�000

The argmax set V0 is the entire set V , and our set estimator V̂n detects this.
Turning to DGP2, we see that coverage for θ0 is in all cases roughly 0.98–0.99.
There is nontrivial power against the false parameter θ in all cases, with the
series estimators giving the lowest false coverage probabilities. For DGP3, the
bounding function is relatively peaked compared to the smooth but nonflat
bounding function of DGP2. Consequently, the average end points of the pre-
liminary set estimator V̂n become more concentrated around 0, the maximizer
of the bounding function. Performance in terms of coverage probabilities im-
proves in nearly all cases, with the series estimators performing significantly
better when n = 1000 and V̂n is used. With DGP4, the bounding function re-
mains as in DGP3, but now with the variance of Yi decreased by a factor of 100.
The result is that the bounding function is more accurately estimated at every
point. Moreover, the set estimator V̂n is now a much smaller interval around 0.
Coverage frequencies for θ0 do not change much relative to DGP3, but false
coverage probabilities drop to 0. Note that in DGP2–DGP4, our method per-
forms better when Vn is estimated in that it makes the coverage probability
more accurate and the false coverage probability smaller. DGP3 and DGP4
serve to illustrate the convergence of our set estimator V̂n when the bounding
function is peaked and precisely estimated, respectively.

In Table II, we report the results of using the CvM statistic of AS to per-
form inference. For DGP1 with a flat bounding function, the CvM statistic
with both the PA/Asy and GMS/Asy performs well. Coverage frequencies for
θ0 were close to the nominal level, closer than our method using polynomial



INTERSECTION BOUNDS 715

TABLE III

RESULTS FOR MONTE CARLO EXPERIMENTS (OTHER ESTIMATION METHODS)

DGP
Sample

Size
Critical Value

Estimating Vn?
Ave. Smoothing

Parameter
Cov.
Prob.

False Cov.
Prob.

Ave. Argmax Set

Min. Max.

CLR With Series Estimation Using Polynomials
1 500 No 5�524 0�954 0�086 −1�800 1�792
1 500 Yes 5�524 0�954 0�086 −1�800 1�792
1 1000 No 5�646 0�937 0�003 −1�801 1�797
1 1000 Yes 5�646 0�937 0�003 −1�801 1�797
2 500 No 8�340 0�995 0�744 −1�800 1�792
2 500 Yes 8�340 0�989 0�602 −0�724 0�724
2 1000 No 9�161 0�996 0�527 −1�801 1�797
2 1000 Yes 9�161 0�977 0�378 −0�619 0�620
3 500 No 8�350 0�998 0�809 −1�800 1�792
3 500 Yes 8�350 0�989 0�612 −0�300 0�301
3 1000 No 9�155 0�996 0�560 −1�801 1�797
3 1000 Yes 9�155 0�959 0�299 −0�253 0�252
4 500 No 8�254 1�000 0�000 −1�800 1�792
4 500 Yes 8�254 0�999 0�000 −0�081 0�081
4 1000 No 9�167 0�998 0�000 −1�801 1�797
4 1000 Yes 9�167 0�981 0�000 −0�069 0�069

CLR With Local Linear Estimation
1 500 No 0�606 0�923 0�064 −1�799 1�792
1 500 Yes 0�606 0�923 0�064 −1�799 1�792
1 1000 No 0�576 0�936 0�003 −1�801 1�796
1 1000 Yes 0�576 0�936 0�003 −1�801 1�796
2 500 No 0�264 0�995 0�871 −1�799 1�792
2 500 Yes 0�264 0�989 0�808 −0�890 0�892
2 1000 No 0�218 0�996 0�779 −1�801 1�796
2 1000 Yes 0�218 0�990 0�675 −0�776 0�776
3 500 No 0�140 0�995 0�943 −1�799 1�792
3 500 Yes 0�140 0�986 0�876 −0�426 0�424
3 1000 No 0�116 0�992 0�907 −1�801 1�796
3 1000 Yes 0�116 0�986 0�816 −0�380 0�377
4 500 No 0�078 0�991 0�000 −1�799 1�792
4 500 Yes 0�078 0�981 0�000 −0�142 0�142
4 1000 No 0�064 0�997 0�000 −1�801 1�796
4 1000 Yes 0�064 0�991 0�000 −0�127 0�127

series or local linear regression. The CvM statistic has a lower false coverage
probability than the CLR confidence intervals in this case, although at a sam-
ple size of 1000, the difference is not large. For DGP2, the bounding function
is nonflat but smooth in a neighborhood of V0 and the situation is much dif-
ferent. For both PA/Asy and GMS/Asy critical values with the CvM statistic,
coverage frequencies for θ0 were 1. Our confidence intervals also overcovered
in this case, with coverage frequencies of roughly 0.98–0.99. Moreover, the
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TABLE IV

COMPUTATION TIMES OF MONTE CARLO EXPERIMENTS

AS Series (B-splines) Series (Polynomials) Local Linear

Total minutes for simulations 8�67 57�99 19�44 83�75
Average seconds for each test 0�03 0�22 0�07 0�31
Ratio relative to AS 1�00 6�69 2�24 9�66

CvM statistic has low power against the false parameter θ, with coverage 1
with PA/Asy and coverage 0.977 and 0.933 with sample size 500 and 1000, re-
spectively, using GMS/Asy critical values. For DGP3 and DGP4, both critical
values for the CvM statistic gave coverage for θ0 and the false parameter θ
equal to 1. Thus under DGP2–DGP4, our confidence intervals perform better
by both measures. In summary, overall neither approach dominates.

Thus, in our Monte Carlo experiments, the CvM statistic exhibits better
power when the bounding function is flat, while our confidence intervals ex-
hibit better power when the bounding function is nonflat. AS established that
the CvM statistic has power against some n−1/2 local alternatives under condi-
tions that are satisfied under DGP1, but that do not hold when the bounding
function has a unique minimum.28 We have established local asymptotic power
for nonparametric estimators of polynomial order less distant than n−1/2 that
apply whether the bounding function is flat or nonflat. Our Monte Carlo re-
sults accord with these findings.29 In the Supplemental Material, we present
further supporting Monte Carlo evidence and local asymptotic power analy-
sis to show why our method performs better than the AS method in nonflat
cases.

In Table IV, we report computation times for our Monte Carlo exper-
iments.30 The fastest performance in terms of total simulation time was
achieved with the CvM statistic of AS, which took roughly 9 minutes to execute
a total of 16,000 replications. Simulations using our approach with B-spline se-
ries, polynomial series, and local linear polynomials took roughly 58, 19, and 84
minutes, respectively. Based on these times, the table shows for each statistic

28Specifically, Assumptions LA3 and LA3′ of AS Theorem 4 do not hold when the sequence of
models has a fixed bounding function with a unique minimum. As they discuss after the statement
of Assumptions LA3 and LA3′, in such cases GMS and plug-in asymptotic tests have trivial power
against n−1/2 local alternatives.

29We did not do CP correction in our reported results. Our conclusion will remain valid even
with CP correction as in AS, since our method performs better in DGP2–DGP4, where we have
overcoverage.

30These computation times were obtained on a 2011 iMac desktop with a 2.7 GHz processor
and 8 GB RAM using our implementation. Generally speaking, performance time for both meth-
ods will depend on the efficiency of one’s code, so more efficient implementation times for both
methods may be possible.
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the average time for a single test and the relative performance of each method
to that obtained using the CvM statistic.31

In practice, one will not perform Monte Carlo experiments, but will rather
be interested in computing a single confidence region for the parameter of
interest. When the bounding function is separable, our approach offers the
advantage that the critical value does not vary with the parameter value being
tested. As a result, we can compute a confidence region in the same amount
of time it takes to compute a single test. On the other hand, to construct a
confidence region based on the CvM statistic, one must compute the statistic
and its associated critical value at a large number of points in the parameter
space, where the number of points required will depend on the size of the
parameter space and the degree of precision desired. If, however, the bounding
function is not separable in the parameter of interest, then both approaches
use parameter-dependent critical values.

8. CONCLUSION

In this paper, we provided a novel method for inference on intersection
bounds. Bounds of this form are common in the recent literature, but two is-
sues have posed difficulties for valid asymptotic inference and bias-corrected
estimation. First, the application of the supremum and infimum operators to
boundary estimates results in finite-sample bias. Second, unequal sampling er-
ror of estimated bounding functions complicates inference. We overcame these
difficulties by applying a precision correction to the estimated bounding func-
tions before taking their intersection. We employed strong approximation to
justify the magnitude of the correction so as to achieve the correct asymptotic
size. As a by-product, we proposed a bias-corrected estimator for intersection
bounds based on an asymptotic median adjustment. We provided formal con-
ditions that justified our approach in both parametric and nonparametric set-
tings, the latter using either kernel or series estimators.

At least two of our results may be of independent interest beyond the scope
of inference on intersection bounds. First, our result on the strong approxima-
tion of series estimators is new. This essentially provides a functional central
limit theorem for any series estimator that admits a linear asymptotic expan-
sion, and is applicable quite generally. Second, our method for inference ap-
plies to any value that can be defined as a linear programming problem with

31The difference in computation time between polynomial and B-spline series implementa-
tion was almost entirely due to the simpler cross-validation search from polynomials. With a
search over only four values of K̂cv, simulation time for B-splines took roughly 20 minutes. Cross-
validation is also in part accountable for slower performance relative to AS. We followed Sec-
tion 9 of AS in choosing tuning parameters for the CvM statistic, which does not involve cross-
validation. Using B-splines with a deterministic bandwidth resulted in a computation time of 12
minutes, roughly 1.4 times the total computation time for the CvM statistic. Nonetheless, we
prefer cross-validation for our method in practice.
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either a finite- or an infinite-dimensional constraint set. Estimators of this form
can arise in a variety of contexts, including, but not limited to, intersection
bounds. We therefore anticipate that although our motivation lay in inference
on intersection bounds, our results may have further application.

APPENDIX A: DEFINITION OF STRONG APPROXIMATION

The following definitions are used extensively.

DEFINITION 4—Strong Approximation: Suppose that for each n, there are
random variables Zn and Z′

n defined on a probability space (A�A�Pn) and
taking values in the separable metric space (S�dS). We say that Zn =d Z

′
n +

oPn(δn) for δn → 0 if there are identically distributed copies of Zn and Z′
n,

denoted Z̄n and Z̄′
n, defined on (A�A�Pn) (suitably enriched if needed) such

that

dS
(
Z̄n� Z̄

′
n

)= oPn(δn)�

Note that copies Z̄n and Z̄′
n can always be defined on (A�A�Pn) by suitably

enriching this space by taking product probability spaces. It turns out that for
the Polish spaces, this definition implies the following stronger and much more
convenient form.

LEMMA 9—A Convenient Implication for Polish Spaces via Dudley and
Philipp: Suppose that (S�dS) is Polish, that is, complete, separable metric space
and that (A�A�Pn) has been suitably enriched. Suppose that Definition 4 holds.
Then there is also an identical copy Z∗

n of Z′
n such that Zn =Z∗

n +oPn(δn), that is,

dS
(
Zn�Z

∗
n

)= oPn(δn)

PROOF: We start with the original probability space (A′�A′�P′
n) that can

carry Zn and (Z̄n� Z̄
′
n). To apply Lemma 2.11 of Dudley and Philipp (1983),

we need to carry a standard uniform random variable U ∼ U(0�1) that is
independent of Zn. To guarantee this, we can always consider U ∼ U(0�1)
on the standard space ([0�1]�F�λ), where F is the Borel sigma algebra on
[0�1] and λ is the usual Lebesgue measure, and then enrich the original
space (A′�A′�P′

n) by formally creating a new space (A�A�Pn) as the product
of (A′�A′�P′

n) and ([0�1]�F�λ). Then using the Polishness of (S�dS), given
the joint law of (Z̄n� Z̄

′
n), we can apply Lemma 2.11 of Dudley and Philipp

(1983) to construct Z∗
n such that (Zn�Z

∗
n) has the same law as (Z̄n� Z̄

′
n), so that

dS(Z̄n� Z̄
′
n)= oPn(δn) implies dS(Zn�Z

∗
n)= oPn(δn). Q.E.D.

Since in all of our cases, the relevant metric spaces are either the space of
continuous functions defined on a compact set equipped with the uniform met-
ric or finite-dimensional Euclidean spaces, which are all Polish spaces, we can
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use Lemma 9 throughout the paper. Using this implication of strong approxi-
mation makes our proofs slightly simpler.

APPENDIX B: PROOFS FOR SECTION 3

B.1. Some Useful Facts and Lemmas

A useful result in our case is the anti-concentration inequality derived in
Chernozhukov, Chetverikov, and Kato (2011).

LEMMA 10 —Anti-Concentration Inequality (Chernozhukov, Chetverikov,
and Kato (2011)): Let X = (Xt)t∈T be a separable Gaussian process indexed
by a semimetric space T such that EP[Xt] = 0 and EP[X2

t ] = 1 for all t ∈ T . Then

sup
x∈R

P
(∣∣∣sup

t∈T
Xt − x

∣∣∣≤ ε
)

≤ Cε
(
EP

[
sup
t∈T

Xt

]
∨ 1

)
� ∀ε > 0�(B.1)

where C is an absolute constant.

An immediate consequence of this lemma is the following result.

COROLLARY 2—Anti-concentration for supv∈Vn Z
∗
n(v): Let Vn be any se-

quence of compact nonempty subsets in V . Then under Conditions C.2 and C.3,
we have that for δn → 0 such that δn = o(1/ān),

sup
x∈R

Pn

(∣∣∣sup
v∈Vn

Z∗
n(v)− x

∣∣∣≤ δn
)

= o(1)�

PROOF: Continuity in Condition C.2 implies separability of Z∗
n . Condi-

tion C.3 implies that EPn[supv∈Vn Z
∗
n(v)] ≤ EPn[supv∈V Z

∗
n(v)] ≤ Kān for some

constant K that depends only on η, so that

sup
x∈R

Pn

(∣∣∣sup
v∈Vn

Z∗
n(v)− x

∣∣∣≤ δn
)

≤ Cδn[Kān ∨ 1] = o(1)�
Q.E.D.

LEMMA 11—Closeness in Conditional Probability Implies Closeness of Con-
ditional Quantiles Unconditionally: Let Xn and Yn be random variables and let
Dn be a random vector. Let FXn(x|Dn) and FYn(y|Dn) denote the conditional dis-
tribution functions, and let F−1

Xn
(p|Dn) and F−1

Yn
(p|Dn) denote the corresponding

conditional quantile functions. If Pn(|Xn − Yn| > ξn|Dn) = oPn(τn) for some se-
quence τn ↘ 0, then with unconditional probability Pn converging to 1, for some
εn = o(τn),

F−1
Xn
(p|Dn)≤ F−1

Yn
(p+ εn|Dn)+ ξn

and

F−1
Yn
(p|Dn)≤ F−1

Xn
(p+ εn|Dn)+ ξn� ∀p ∈ (0�1 − εn)�
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PROOF: We have that for some εn = o(τn), Pn[Pn{|Xn − Yn| > ξn|Dn} ≤
εn] → 1, that is, there is a setΩn such that Pn(Ωn)→ 1 such that Pn{|Xn−Yn|>
ξn|Dn} ≤ εn for all Dn ∈Ωn. So, for all Dn ∈Ωn,

FXn(x|Dn)+ εn ≥ FYn+ξn(x|Dn) and

FYn(x|Dn)+ εn ≥ FXn+ξn(x|Dn)� ∀x ∈ R�

which implies the inequality stated in the lemma, by definition of the con-
ditional quantile function and equivariance of quantiles to location shifts.

Q.E.D.

B.2. Proof of Lemma 1—Concentration of Inference on Vn

Step 1. Letting

An := sup
v∈Vn

Zn(v)� Bn := sup
v∈V

Zn(v)�

Rn :=
(

sup
v∈V

∣∣Zn(v)
∣∣+ κn

)
sup
v∈V

∣∣∣∣σn(v)sn(v)
− 1

∣∣∣∣�
A∗

n := sup
v∈Vn

Z∗
n(v)� B∗

n := sup
v∈V

Z∗
n(v)�

R∗
n :=

(
sup
v∈V

∣∣Z∗
n(v)

∣∣+ κn
)

sup
v∈V

∣∣∣∣σn(v)sn(v)
− 1

∣∣∣∣�
we obtain

sup
v∈V

θn0 − θ̂n(v)

sn(v)
= sup

v∈V

{
θn0 − θn(v)

sn(v)
+Zn(v)

σn(v)

sn(v)

}

= sup
v∈Vn

{
(θn0 − θn(v))

sn(v)
+Zn(v)

σn(v)

sn(v)

}

∨ sup
v/∈Vn

{
(θn0 − θn(v))

sn(v)
+Zn(v)

σn(v)

sn(v)

}

≤(1) sup
v∈Vn

{
Zn(v)

σn(v)

sn(v)

}

∨ sup
v/∈Vn

{−κnσn(v)
sn(v)

+Zn(v)
σn(v)

sn(v)

}
≤An ∨ (Bn − κn)+ 2Rn

≤(2) A
∗
n ∨ (

B∗
n − κn

)+ 2R∗
n + oPn(δn)�
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where in inequality (1) we used that θn(v) ≥ θn0 and θn0 − θn(v) ≤ −κnσn(v)
outside Vn, and in inequality (2) we used Condition C.2. Next, since we as-
sumed in the statement of the lemma that κn � ān + ��n, by Condition C.4,
R∗
n =OPn(ān + ān + ��n)oPn(δn/(ān + ��n))= oPn(δn)� Therefore, there is a de-

terministic term o(δn) such that Pn(2R∗
n + oPn(δn) > o(δn))= o(1).32

Hence uniformly in x ∈ [0�∞),

Pn

(
sup
v∈V

(θn0 − θ̂n(v))

sn(v)
> x

)
≤ Pn

(
A∗

n + o(δn) > x
)+ Pn

(
B∗
n − κn + o(δn) > 0

)+ o(1)

≤ Pn

(
A∗

n > x
)+ Pn

(
B∗
n − κn > 0

)+ o(1)

≤ Pn

(
A∗

n > x
)+ (

1 − γ′
n

)+ o(1)�

where the last two inequalities follow by Corollary 2 and by κn =Qγ′
n
(B∗

n).
Step 2. To complete the proof, we must show that there is γ′

n ↗ 1 that obeys
the stated condition. Let 1−γ′

n ↘ 0 such that 1−γ′
n ≥ C/�n. It suffices to show

that

κn ≤
(
ān + c(γ′

n)

ān

)
≤
(
ān + η��n +η logC−1

ān

)
�(B.2)

where c(γ′
n)=Qγ′

n
(E). To show the first inequality in (B.2), note that

Pn

(
sup
v∈V

Z∗
n(v)≤ (

ān + c
(
γ′
n

)
/ān

))=(1) Pn

(
En(V)≤ c

(
γ′
n

))
≥(2) Pn

(
E ≤ c

(
γ′
n

))= γ′
n�

where equality (1) holds by definition of En(V) and inequality (2) holds by
Condition C.3. To show the second inequality in (B.2), note that by Condi-
tion C.3, P(E > t) ≤ exp(−tη−1) for some constant η > 0, so that c(γ′

n) ≤
−η log(1 − γ′

n)≤ η��n +η logC−1. Q.E.D.

B.3. Proof of Theorem 1—Analytical Construction

Part (i)—Level. Observe that

Pn

(
θn0 ≤ θ̂n0(p)

)= Pn

(
sup
v∈V

θn0 − θ̂n(v)

sn(v)
≤ kn�V̂n(p)

)

≥(1) Pn

(
sup
v∈V

θn0 − θ̂n(v)

sn(v)
≤ kn�Vn(p)

)
− Pn(Vn �⊆ V̂n)

32Throughout the paper, we use the elementary fact that if Xn = oPn (Δn) for some Δn ↘ 0,
then there is an o(Δn) term such that Pn{|Xn|> o(Δn)} → 0.
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≥(2) Pn

(
sup
v∈Vn

Z∗
n(v)≤ kn�Vn(p)

)
− o(1)

= Pn

(
En(Vn)≤ c(p)

)− o(1)

≥(3) Pn

(
E ≤ c(p)

)− o(1)=(4) p− o(1)�

where inequality (1) follows by monotonicity of V �→ kn�V(p) = an(V) +
c(p)/an(V) for large n holding by construction, inequality (2) holds by
Lemma 1, by Pn(Vn �⊆ V̂n)= o(1) holding by Lemma 2, and also by the fact that
the critical value kn�Vn(p)≥ 0 is nonstochastic; and inequality (3) and equality
(4) hold by Condition C.3.

Part (ii)—Estimation Risk. We have that under Pn,∣∣θ̂n0(p)− θn0

∣∣
=
∣∣∣inf
v∈V

[
θ̂n(v)+ kn�V̂n(p)sn(v)

]− θn0

∣∣∣
=
∣∣∣∣sup
v∈V

([
θn0 − θ̂n(v)

sn(v)
− kn�V̂n(p)

]
σn(v)

sn(v)

σn(v)

)∣∣∣∣
≤(1)

(∣∣∣∣sup
v∈V

θn0 − θ̂n(v)

sn(v)

∣∣∣∣+ kn�V̂n(p)

)
σ̄n

(
1 + oPn

(
δn

ān + ��n

))

≤(2)

(∣∣∣∣sup
v∈V

θn0 − θ̂n(v)

σn(v)

∣∣∣∣+ kn�V̂n(p)

)
σ̄n

(
1 + oPn

(
δn

ān + ��n

))2

≤(3)

(
sup
v∈Vn

∣∣Z∗
n(v)

∣∣+ oPn(δn)+ kn�V̂n(p)
)

× σ̄n

(
1 + oPn

(
δn

ān + ��n

))2

wp → 1

≤(4)

(
sup
v∈Vn

∣∣Z∗
n(v)

∣∣+ oPn(δn)+ kn�V n(p)
)

× σ̄n

(
1 + oPn

(
δn

ān + ��n

))2

wp → 1

≤(5) 3
∣∣∣∣an(V n)+ OPn(1)

an(V n)
+ oPn(δn)

∣∣∣∣
× σ̄n

(
1 + oPn

(
δn

ān + ��n

))2

wp → 1

≤(6) 4
∣∣∣∣an(V n)+ OPn(1)

an(V n)

∣∣∣∣σ̄n wp → 1�
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where inequality (1) holds by Condition C.4 and the triangle inequality; in-
equality (2) holds by Condition C.4; inequality (3) follows because wp → 1, for
some o(δn),

sup
v∈V0

Z∗
n(v)− o(δn) ≤(a) sup

v∈V0

Zn(v)≤(b) sup
v∈V

θn0 − θ̂n(v)

σn(v)

≤(c)

(
sup
v∈Vn

Z∗
n(v)

)
∨ 0 + o(δn)�

where inequality (a) is by Condition C.2, inequality (b) is by definition of Zn,
and inequality (c) is by the proof of Lemma 1, so that wp → 1,∣∣∣∣sup

v∈V

θn0 − θ̂n(v)

σn(v)

∣∣∣∣≤ sup
v∈Vn

∣∣Z∗
n(v)

∣∣+ oPn(δn)�

Inequality (4) follows by Lemma 2, which implies Vn ⊆ V̂n ⊆ V n wp → 1, so that

kn�V̂n(p)≤ kn�V n(p)= an(V n)+ c(p)

an(V n)
�

Condition C.3 gives inequality (5). Inequality (6) follows because an(V n) ≥ 1,
ān ≥ 1, and δn = o(1); this inequality is the claim that we needed to prove.

Part (iii). We have that

θna − θn0 ≥ 4σ̄n

(
an(V n)+ μn

an(V n)

)
> θ̂n0(p)− θn0 wp → 1�

with the last inequality occurring by Part (ii) since μn →Pn ∞. Q.E.D.

B.4. Proof of Theorem 2—Simulation Construction

Part (i)—Level Consistency. Let us compare critical values

kn�Vn(p)=Qp

(
sup
v∈Vn

Z

n(v)

∣∣Dn

)
and κn�Vn(p)=Qp

(
sup
v∈Vn

Z̄∗
n(v)

)
�

The former is data dependent, while the latter is deterministic. Note that
kn�Vn(p)≥ 0 by Condition C.2(b) for p≥ 1/2. By Condition C.2, for some de-
terministic term o(δn),

Pn

(∣∣∣sup
v∈Vn

Z

n(v)− sup

v∈Vn
Z̄∗
n(v)

∣∣∣> o(δn)∣∣Dn

)
= oPn(1)�

which implies by Lemma 11 that for some εn ↘ 0, wp → 1,

kn�Vn(p)≥ (
κn�Vn(p− εn)− o(δn)

)
+ for all p ∈ [1/2�1 − εn)�(B.3)
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The result follows analogously to the proof in Part (i) of Theorem 1, namely

Pn

(
θn0 ≤ θ̂n0(p)

)
= Pn

(
sup
v∈V

θn0 − θ̂n(v)

sn(v)
≤ kn�V̂n(p)

)

≥(1) Pn

(
sup
v∈V

θn0 − θ̂n(v)

sn(v)
≤ kn�Vn(p)

)
− o(1)

≥(2) Pn

(
sup
v∈V

θn0 − θ̂n(v)

sn(v)
≤ (

κn�Vn(p− εn)− o(δn)
)
+

)
− o(1)

≥(3) Pn

(
sup
v∈Vn

Z∗
n(v)≤ (

κn�Vn(p− εn)− o(δn)
)
+

)
− o(1)

≥ Pn

(
sup
v∈Vn

Z∗
n(v)≤ κn�Vn(p− εn)− o(δn)

)
− o(1)

≥(4) p− εn − o(1)= p− o(1)�

where inequality (1) follows by monotonicity of V �→ kn�V(p) and by Pn(Vn �⊆
V̂n)= o(1) shown in Lemma 2; inequality (2) holds by the comparison of quan-
tiles in equation (B.3); inequality (3) holds by Lemma 1; inequality (4) holds
by anti-concentration Corollary 2.

Parts (ii) and (iii)—Estimation Risk and Power. By Lemma 2, wp → 1, V̂n ⊆
V n, so that kn�V̂n(p)≤ kn�V n(p)� By Condition C.2 for some deterministic term
o(δn),

Pn

(∣∣∣sup
v∈V n

Z

n(v)− sup

v∈V n
Z̄∗
n(v)

∣∣∣> o(δn)|Dn

)
= oPn(1/�n)�(B.4)

which implies by Lemma 11 that for some εn ↘ 0, wp → 1, for all p ∈ (εn�1 −
εn),

kn�V n(p)≤ κn�V n(p+ εn)+ o(δn)�(B.5)

where the terms o(δn) are different in different places. By Condition C.3, for
any fixed p ∈ (0�1),

κV n(p+ εn)≤ an(V n)+ c(p+ εn)/an(V n)= an(V n)+O(1)/an(V n)�

Thus, combining the inequalities above and o(δn) = o(ā−1
n ) = o(a−1

n (V n)) by
Condition C.2, wp → 1,

kn�V̂n(p)≤ an(V n)+O(1)/an(V n)�
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Now Parts (ii) and (iii) follow as in the proof of Parts (ii) and (iii) of Theorem 1,
using this bound on the simulated critical value instead of the bound on the
analytical critical value. Q.E.D.

B.5. Proof of Lemma 3—Concentration on V0

By Conditions S and V, wp → 1,∣∣∣sup
v∈Vn

Z∗
n(v)− sup

v∈V0

Z∗
n(v)

∣∣∣≤ sup
‖v−v′‖≤rn

∣∣Z∗
n(v)−Z∗

n

(
v′)∣∣= oPn

(
ā−1
n

)
�(B.6)

Conclude similarly to the proof of Lemma 1, using anti-concentration Corol-
lary 2, that

Pn

(
sup
v∈V

θn0 − θ̂n(v)

sn(v)
≤ x

)
≥ Pn

(
sup
v∈V0

Z∗
n(v)+ o(ā−1

n )≤ x
)

− o(1)

≥ Pn

(
sup
v∈V0

Z∗
n(v)≤ x

)
− o(1)�

This gives a lower bound. Similarly, using Conditions C.3 and C.4 and anti-
concentration Corollary 2,

Pn

(
sup
v∈V

θn0 − θ̂n(v)

sn(v)
≤ x

)
≤ Pn

(
sup
v∈V0

Zn(v)
σn(v)

sn(v)
≤ x

)

≤ Pn

(
sup
v∈V0

Z∗
n(v)− o(δn)≤ x

)
+ o(1)

≤ Pn

(
sup
v∈V0

Z∗
n(v)≤ x

)
+ o(1)�

where the o(·) terms above are different in different places and the first in-
equality follows from

sup
v∈V

θn0 − θ̂n(v)

sn(v)
≥ sup

v∈V0

θn0 − θ̂n(v)

sn(v)
= sup

v∈V0

Zn(v)
σn(v)

sn(v)
�

This gives the upper bound. Q.E.D.

B.6. Proof of Theorem 3—When Simulation Inference Becomes Sharp

Part (i)—Size. By Lemma 2, wp → 1, V̂n ⊆ V n, so that kn�V̂n(p) ≤ kn�V n(p)
wp → 1. So let us compare critical values

kn�V n(p)=Qp

(
sup
v∈V n

Z

n(v)

∣∣Dn

)
and κn�V0(p)=Qp

(
sup
v∈V0

Z̄∗
n(v)

)
�
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The former is data dependent, while the latter is deterministic. Recall that by
Condition C.2, wp → 1, we have (B.4). By Condition V, dH(V n�V0) ≤ rn, and
so by Condition S, we have for some o(ā−1

n ),

Pn

(∣∣∣sup
v∈V n

Z̄∗
n(v)− sup

v∈V0

Z̄∗
n(v)

∣∣∣> o(ā−1
n

)∣∣Dn

)
= oPn(1)�

Combining (B.4) and this relation, we obtain that for some o(ā−1
n ) term,

Pn

(∣∣∣sup
v∈V n

Z

n(v)− sup

v∈V0

Z̄∗
n(v)

∣∣∣> o(ā−1
n

)∣∣Dn

)
= oPn(1)�

This implies by Lemma 11 that for some εn ↘ 0, and any p ∈ (εn�1 − εn),
wp → 1,

kn�V̂n(p)≤ kn�V n(p)≤ κn�V0(p+ εn)+ o
(
ā−1
n

)
�(B.7)

Hence, for any fixed p,

Pn

(
θn0 ≤ θ̂n0(p)

)
= Pn

(
sup
v∈V

θn0 − θ̂n(v)

sn(v)
≤ kn�V̂n(p)

)

≤(1) Pn

(
sup
v∈V

θn0 − θ̂n(v)

sn(v)
≤ κn�V0(p+ εn)+ o

(
ā−1
n

))+ o(1)

≤(2) Pn

(
sup
v∈V0

Z∗
n(v)≤ κn�V0(p+ εn)+ o

(
ā−1
n

))+ o(1)

≤(3) p+ εn + o(1)= p+ o(1)�

where inequality (1) is by the quantile comparison (B.7), inequality (2) is by
Lemma 3, and inequality (3) is by anti-concentration Corollary 2. Combining
this with the lower bound of Theorem 2, we have the result.

Parts (ii) and (iii)—Estimation Risk and Power. We have that by Condi-
tion C.3,

κn�V0(p+ εn)≤ an(V0)+ c(p+ εn)/an(V0)= an(V0)+O(1)/an(V0)�

Hence combining this with equation (B.7), we have, wp → 1,

kn�V̂n(p)≤ an(V0)+O(1)/an(V0)+ o
(
ā−1
n

)= an(V0)+O(1)/an(V0)�

Then Parts (ii) and (iii) follow identically to the proof of Parts (ii) and (iii)
of Theorem 1, using this bound on the simulated critical value instead of the
bound on the analytical critical value. Q.E.D.
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APPENDIX C: PROOFS FOR SECTION 4

C.1. Tools and Auxiliary Lemmas

We shall heavily rely on the Talagrand–Samorodnitsky (TS) inequality, which
was obtained by Talagrand and sharpens earlier results by Samorodnitsky.
Here it is restated from van der Vaart and Wellner (1996, Proposition A.2.7,
p. 442).

Talagrand–Samorodnitsky Inequality

Let X be a separable zero-mean Gaussian process indexed by a set T . Sup-
pose that for some Γ > σ(X)= supt∈T σ(Xt), 0< ε0 ≤ σ(X),

N(ε�T�ρ)≤
(
Γ

ε

)ν

� for 0< ε< ε0�

where N(ε�T�ρ) is the covering number of T by ε-balls with respect to (w.r.t.)
the standard deviation metric ρ(t� t ′) = σ(Xt −Xt′). Then there exists a uni-
versal constant D such that for every λ≥ σ2(X)(1 + √

ν)/ε0, we have

P
(

sup
t∈T

Xt > λ
)

≤
(

DΓ λ√
νσ2(X)

)v(
1 −�

(
λ/σ(X)

))
�(C.1)

where �(·) denotes the standard normal cumulative distribution function.
The following lemma is an application of this inequality that we use.

LEMMA 12—Concentration Inequality via Talagrand–Samorodnitsky: Let
Zn be a separable zero-mean Gaussian process indexed by a set V such that
supv∈Vσ(Zn(v))= 1. Suppose that for some Γn(V) > 1 and d ≥ 1,

N(ε�V�ρ)≤
(
Γn(V)

ε

)d

for 0< ε< 1�

where N(ε�V�ρ) is the covering number of V by ε-balls w.r.t. the standard devia-
tion metric ρ(v� v′)= σ(Zn(v)−Zn(v

′)). Then for

an(V)= (
2
√

logLn(V)
)∨ (1 + √

d)� Ln(V) := C ′
n

(
Γn(V)√
d

)d

�

where for D denoting Talagrand’s constant in (C.1) and C ′
n such that

C ′
n ≥DdCd

1√
2π

� Cd := max
λ≥0

λd−1e−λ2/4�
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we have for z ≥ 0,

P
(
an(V)

(
sup
v∈V

Zn(v)− an(V)
)
> z

)

≤ exp
(

−z
2

− z2

4a2
n(V)

)
≤ exp

(
−z

2

)
�

PROOF: We apply the TS inequality by setting t = v, X =Z, σ(X)= 1, ε0 =
1, ν = d, with λ≥ (1 + √

d), so that

P
(

sup
v∈V

Zn(v) > λ
)

≤
(
DΓn(V)λ√

d

)d(
1 −�(λ)

)

≤
(
DΓn(V)λ√

d

)d 1√
2π

1
λ
e−λ2/2 ≤Ln(V)e

−λ2/4�

Setting, for z ≥ 0, λ= z
an(V)

+ an(V)≥ (1 + √
d)� we obtain

Ln(V)exp
(

−λ
2

4

)
≤ exp

(
−z

2
− z2

4a2
n(V)

)
�

Q.E.D.

The following lemma is an immediate consequence of Corollary 2.2.8 of
van der Vaart and Wellner (1996).

LEMMA 13—Maximal Inequality for a Gaussian Process: Let X be a separa-
ble zero-mean Gaussian process indexed by a set T . Then for every δ > 0,

E sup
ρ(s�t)≤δ

|Xs −Xt| �
∫ δ

0

√
logN(ε�T�ρ)dε�

E sup
t∈T

|Xt| � σ(X)+
∫ 2σ(X)

0

√
logN(ε�T�ρ)dε�

where σ(X) = supt∈T σ(Xt) and N(ε�T�ρ) is the covering number of T with
respect to the semimetric ρ(s� t)= σ(Xs −Xt).

PROOF: The first conclusion follows from Corollary 2.2.8 of van der Vaart
and Wellner (1996), since covering and packing numbers are related by
N(ε�T�ρ) ≤ D(ε�T�ρ) ≤ N(ε/2�T�ρ). The second conclusion follows from
the special case of the first conclusion: for any t0 ∈ T , E supt∈T |Xt | � E|Xt0 | +∫ diam(T)

0

√
logN(ε�T�ρ)dε≤ σ(X)+ ∫ 2σ(X)

0

√
logN(ε�T�ρ)dε. Q.E.D.
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C.2. Proof of Lemma 5

Step 1—Verification of Condition C.1. This condition holds by inspection, in
view of the continuity of v �→ pn(v) and by Ωn and Ω̂n being positive definite.

Step 2—Verification of Condition C.2. Set δn = 1/ logn. Condition NS(i) di-
rectly assumes Condition C.2(a).

To show Condition C.2(b), we employ the maximal inequality stated in
Lemma 13. Set Xt =Z∗

n(v)−Z

n(v)� t = v, and T = V , and note that for some

absolute constant C, conditional on Dn,

N(ε�T�ρ)≤
(

1 +CΥn diam(T)
ε

)d

� 0< ε< 1�

since σ(Xt −Xt′) � Υn‖t − t ′‖�T ⊂ R
d� where Υn is an upper bound on the

Lipschitz constant of the function

v �→ pn(v)
′Ω1/2

n

‖pn(v)′Ω1/2
n ‖ − pn(v)

′Ω̂1/2
n

‖pn(v)′Ω̂1/2
n ‖ �

where diam(T) is the diameter of set T under the Euclidean metric. Using
inequality (E.6) in the Supplemental Appendix, we can bound

Υn ≤ 2Ln

λmax(Ω
1/2
n )

λmin(Ω
1/2
n )

+ 2Ln

λmax(Ω̂
1/2
n )

λmin(Ω̂
1/2
n )

=OPn(Ln)�

where Ln is the constant defined in Condition NS(i) and by assumption
logLn � logn. Here we use the fact the eigenvalues of Ωn and Ω̂n are bounded
away from zero and from above by Condition NS(i) and Condition NS(ii).
Therefore, logN(ε�T�ρ)� logn+ log(1/ε)�

Using (E.6) again gives

σ(X)� sup
v∈V

∥∥∥∥ pn(v)
′Ω1/2

n

‖pn(v)′Ω1/2
n ‖ − pn(v)

′Ω̂1/2
n

‖pn(v)′Ω̂1/2
n ‖

∥∥∥∥
≤ sup

v∈V
2
‖pn(v)′(Ω̂1/2

n −Ω1/2
n )‖

‖pn(v)′Ω1/2
n ‖

≤ sup
v∈V

2
‖pn(v)′Ω1/2

n (Ω−1/2
n Ω̂1/2

n − I)‖
‖pn(v)′Ω1/2

n ‖
≤ ‖Ω−1/2

n Ω̂1/2
n − I‖ ≤ ‖Ω−1/2

n ‖‖Ω̂1/2
n −Ω1/2

n ‖ =OPn

(
n−b)
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for some constant b > 0, where we have used that the eigenvalues of Ωn and
Ω̂n are bounded away from zero and from above under Conditions NS(i) and
NS(ii), and the assumption ‖Ω̂n −Ωn‖ =OPn(n

−b). Hence

E
(

sup
t∈T

|Xt ||Dn

)
� σ(X)+

∫ 2σ(X)

0

√
log(n/ε)dε=OPn

(
n−b√logn

)
�

Hence for each C > 0,

Pn

(
sup
v∈V

∣∣Z∗
n(v)−Z


n(v)
∣∣>Cδn∣∣Dn

)

� 1
Cδn

OPn

(
n−b√logn

)= oPn(1/�n)�

which verifies Condition C.2(b).
Step 3—Verification of Condition C.3. We shall employ Lemma 12, which

has the required notation in place. We only need to compute an upper bound
on the covering numbers N(ε�V�ρ) for the process Z∗

n . We have that

σ
(
Z∗
n(v)−Z∗

n(ṽ)
) ≤

∥∥∥∥ pn(v)
′Ω1/2

n

‖pn(v)′Ω1/2
n ‖ − pn(ṽ)

′Ω1/2
n

‖pn(ṽ)′Ω1/2
n ‖

∥∥∥∥
≤ 2

∥∥∥∥(pn(v)−pn(ṽ))
′Ω1/2

n

‖pn(v)′Ω1/2
n ‖

∥∥∥∥
≤ 2Ln

λmax(Ω
1/2
n )

λmin(Ω
1/2
n )

‖v− ṽ‖ ≤ CLn‖v− ṽ‖�

where C is some constant that does not depend on n, by the eigenvalues of Ωn

bounded away from zero and from above. Hence it follows that

N(ε�V�ρ)≤
(

1 +CLn diam(V)
ε

)d

� 0< ε< 1�

where the diameter of V is measured by the Euclidean metric. Condition C.3
now follows by Lemma 12, with an(V)= (2

√
logLn(V))∨(1+√

d) andLn(V)=
C ′(1 +CLn diam(V))d , where C ′ is some positive constant.

Step 4—Verification of Condition C.4. Under Condition NS, we have that

an(V)≤ ān := an(V)�
√

log�n + logn�
√

logn�

so that Condition C.4(a) follows if
√

logn
√
ζ2
n/n→ 0.
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To verify Condition C.4(b), note that uniformly in v ∈ V ,

∣∣∣∣‖pn(v)′Ω̂1/2
n ‖

‖pn(v)′Ω1/2
n ‖ − 1

∣∣∣∣
≤
∣∣∣∣‖pn(v)′Ω̂1/2

n ‖ − ‖pn(v)′Ω1/2
n ‖

‖pn(v)′Ω1/2
n ‖

∣∣∣∣
≤ ‖pn(v)′(Ω̂1/2

n −Ω1/2
n )‖

‖pn(v)′Ω1/2
n ‖ ≤ ‖pn(v)′Ω1/2(Ω−1/2

n Ω̂1/2
n − I)‖

‖pn(v)′Ω1/2
n ‖

≤ ‖Ω−1/2
n Ω̂1/2

n − I‖ ≤ ‖Ω−1/2
n ‖‖Ω̂1/2

n −Ω1/2
n ‖ = oPn(δn/ān)

by ‖Ω̂1/2 −Ω1/2
n ‖ =OPn(n

−b) and ‖Ω−1/2
n ‖ bounded, both implied by the assump-

tions. Q.E.D.

C.3. Proof of Lemma 6

To show claim (i), we need to establish that for ϕn = o(1) · ( 1

Ln
√

logn
)� with

any o(1) term, we have that sup‖v−ṽ‖≤ϕn |Z∗
n(v)−Z∗

n(ṽ)| = oPn(1).
Consider the stochastic process X = {Z∗

n(v)� v ∈ V }. We shall use the stan-
dard maximal inequality stated in Lemma 13. From the proof of Lemma 5, we
have σ(Z∗

n(v)−Z∗
n(ṽ))≤ CLn‖v− ṽ‖, where C is some constant that does not

depend on n, and logN(ε�V�ρ) � logn + log(1/ε)� Since ‖v − ṽ‖ ≤ ϕn �⇒
σ(Z∗

n(v)−Z∗
n(ṽ))≤ C o(1)√

logn
, we have

E sup
‖v−ṽ‖≤ϕn

|Xv −Xṽ| �
∫ Co(1)/

√
logn

0

√
log(n/ε)dε

� o(1)√
logn

√
logn= o(1)�

Hence the conclusion follows from Markov’s inequality.

Under Condition V, by Lemma 2, rn � (
√

lognζ
2
n

n
)1/ρnc−1

n � so rn = o(ϕn) if

(√
logn

ζ2
n

n

)1/ρn

c−1
n = o

(
1

Ln

√
logn

)
�(C.2)

Thus, Condition S holds. The remainder of the lemma follows by direct calcu-
lation. Q.E.D.



732 V. CHERNOZHUKOV, S. LEE, AND A. M. ROSEN

APPENDIX D: PROOFS FOR SECTION 5

D.1. Proof of Theorem 7 and Corollary 1

The first step of our proof uses Yurinskii’s (1977) coupling. For completeness
we now state the formal result from Pollard (2002, p. 244).

Yurinskii’s Coupling

Consider a sufficiently rich probability space (A�A�P). Let ξ1� � � � � ξn be in-
dependent Kn-vectors with Eξi = 0 for each i and let Δ :=∑

i E‖ξi‖3 be finite.
Let S = ξ1 + · · · + ξn. For each δ > 0, there exists a random vector T with
N(0� var(S)) distribution such that

P{‖S − T‖> 3δ} ≤ C0B

(
1 + | log(1/B)|

Kn

)
� where B := ΔKnδ

−3

for some universal constant C0.
The proof has two steps: in the first, we couple the estimator

√
n(β̂n − βn)

with the normal vector; in the second, we establish the strong approximation.
Step 1. To apply the coupling, consider

n∑
i=1

ξi� ξi = ui�n/
√
n∼ (0� IKn/n)�

Then we have that
∑n

i=1E‖ξi‖3 = Δn. Therefore, by Yurinskii’s coupling,

Pn

{∥∥∥∥∥
n∑
i=1

ξi − Nn

∥∥∥∥∥≥ 3δn

}
→ 0 if KnΔn/δ

3
n → 0�

Combining this with the assumption on the linearization error rn, we obtain∥∥Ω−1/2
n

√
n(β̂n −βn)− Nn

∥∥
≤
∥∥∥∥∥

n∑
i=1

ξi − Nn

∥∥∥∥∥+
∥∥∥∥∥Ω−1/2

n

√
n(β̂n −βn)−

n∑
i=1

ξi

∥∥∥∥∥
= oPn(δn)+ rn = oPn(δn)�

Step 2. Using the result of Step 1 and that

√
npn(v)

′(β̂n −βn)

‖gn(v)‖ =
√
ngn(v)

′Ω−1/2
n (β̂n −βn)

‖gn(v)‖ �
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we conclude that

∣∣Sn(v)∣∣ :=
∣∣∣∣
√
ngn(v)

′Ω−1/2
n (β̂n −βn)

‖gn(v)‖ − gn(v)
′Nn

‖gn(v)‖
∣∣∣∣(D.1)

≤ ∥∥√nΩ−1/2
n (β̂n −βn)− Nn

∥∥= oPn(δn)

uniformly in v ∈ V . Finally,

sup
v∈V

∣∣∣∣
√
n(θ̂n(v)− θn(v))

‖gn(v)‖ − gn(v)
′Nn

‖gn(v)‖
∣∣∣∣

≤ sup
v∈V

∣∣∣∣
√
n(θ̂n(v)− θn(v))

‖gn(v)‖ −
√
ngn(v)

′Ω−1/2
n (β̂n −βn)

‖gn(v)‖
∣∣∣∣

+ sup
v∈V

∣∣∣∣
√
ngn(v)

′Ω−1/2
n (β̂n −βn)

‖gn(v)‖ − gn(v)
′Nn

‖gn(v)‖
∣∣∣∣

= sup
v∈V

∣∣√nAn(v)/
∥∥gn(v)∥∥∣∣+ sup

v∈V

∣∣Sn(v)∣∣= o(δn)+ oPn(δn)�

using the assumption on the approximation errorAn(v)= θ(v)−pn(v)′βn and
(D.1). This proves the theorem.

Step 3. To show the corollary note that

EPn‖ui�n‖3 ≤ ‖Ω−1/2
n Q−1

n ‖3 ·EPn

∥∥pn(Vi)εi∥∥3 � τ3
nK

3/2
n Cn�

using the boundedness assumptions stated in the corollary.
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