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household covariates across randomization sites. Appendix C presents linear model

estimates using the ISCPR MTO data and Appendix D presents estimates for the

first stage of the complete triangular (CT) model. Appendix E illustrates how a semi-

monotone IV assumption can sign the effect of the endogenous variable on the outcome.

∗We have benefitted from comments from Alex Belloni and participants at research seminars
given at Erasmus University Rotterdam, Duke, Simon Fraser, Leicester, Johns Hopkins, a 2018 joint
CeMMAP/Northwestern conference on incomplete models and the 2020 EALE-SOLE-AASLE conference.
Adam Rosen and Andrew Chesher gratefully acknowledge financial support from the UK Economic and
Social Research Council through a grant (RES-589-28-0001) to the ESRC Centre for Microdata Methods
and Practice (CeMMAP). Adam Rosen gratefully acknowledges financial support from a British Academy
mid-career Fellowship. The U.S. Department of Housing and Urban Development (HUD) provided the MTO
data; we use the version made available by the Inter-university Consortium for Political and Social Research
(ICPSR) at the University of Michigan. The views expressed in this paper are those of the authors and
should not be interpreted as those of HUD or the U.S. Government.

†Address: Department of Economics, University College London, Gower Street, London WC1E 6BT,
United Kingdom. Email: andrew.chesher@ucl.ac.uk.

‡Address: Department of Economics, Duke University, 213 Social Sciences, Box 90097 Durham, NC
27708, United States. Email: adam.rosen@duke.edu.

§Address: University of Bristol, Senate House, Tyndall Avenue, Bristol BS8 1TH, United Kingdom.
Email: zahra.siddique@bristol.ac.uk.

1



Appendix F provides computational details for the implementation of IV set estimates

and confidence sets, further to those provided in the main text.
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A Details of Bound Derivations

This section provides further mathematical detail for the derivation of bounds for the IV

model presented in Section 3.1. To proceed with set identification analysis for model param-

eters θ ≡ (β, γ, c1, c2), define the sets

U (y, x, w; θ) ≡


(−∞, c1 − wβ − xγ] , if y = 0,

(c1 − wβ − xγ, c2 − wβ − xγ] , if y = 1,

(c2 − wβ − xγ,∞) , if y = 2.

 . (A.1)

From Chesher and Rosen (2017) we have for any set S ⊆ R the conditional containment

inequality

Cθ (S|x, z) ≡ P [U (Y,X,W ; θ) ⊆ S|X = x, Z = z] ≤ P [U ∈ S|X = x, Z = z] ,

as well as the conditional capacity inequality

P [U ∈ S|X = x, Z = z] ≤ P [U (Y,X,W ; θ) ∩ S ≠ ∅|X = x, Z = z] ,

where

Cθ (S|x, z) ≡ 1− Cθ (Sc|x, z) = P [U (Y,X,W ; θ) ∩ S ≠ ∅|X = x, Z = z] .

In the context of the ordered outcome IV model, the capacity and containment functional

inequalities take a particular form, which is now derived. Define for y ∈ {0, 1, 2, 3}, x ∈
Supp (X), and any w ∈ Supp (W ) the function c (y, x, w; θ) as follows.

c (0, x, w; θ) ≡ −∞, c (1, x, w; θ) ≡ c1 − xγ − wβ,

c (2, x, w; θ) ≡ c2 − xγ − wβ, c (3, x, w; θ) ≡ ∞.

Thus, we can express the set U (y, x, w; θ) as

U (y, x, w; θ) = [c (Y,X,W ; θ) , c (Y + 1, X,W ; θ)] ,

with the lower (upper) bound of the interval understood to be open in the event c (Y,X,W ; θ) =
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−∞ (= +∞).1

We can now re-express the containment and capacity functionals as

1. For all t ∈ R:

Cθ ((−∞, t] |x, z) = P [c (Y + 1, X,W ; θ) ≤ t|X = x, Z = z] ,

Cθ ((−∞, t] |x, z) = P [c (Y,X,W ; θ) ≤ t|X = x, Z = z] .

The difference Cθ ((−∞, t] |x, z)− Cθ ((−∞, t] |x, z) is equal to

P [c (Y,X,W ; θ) ≤ t < c (Y + 1, X,W ; θ) |X = x, Z = z] .

2. For all s, t ∈ R, s ≤ t,

Cθ ([t1, t2] |x, z) = P [t1 ≤ c (Y,X,W ; θ) ∧ c (Y + 1, X,W ; θ) ≤ t2|X = x, Z = z] ,

Cθ ([t1, t2] |x, z) = P [c (Y,X,W ; θ) ≤ t2 ∧ c (Y + 1, X,W ; θ) ≥ t1|X = x, Z = z] .

3. For all t ∈ R:

Cθ ([t,∞) |x, z) = P [c (Y,X,W ; θ) ≥ t|X = x, Z = z] ,

Cθ ([t,∞) |x, z) = P [c (Y + 1, X,W ; θ) ≥ t|X = x, Z = z] .

If U ∼ N (0, 1) and U ∥ (X,Z), then using results from Chesher and Rosen (2017)

Theorem 4 we have that the identified set for θ ≡ (β, c1, c2, γ1, γ2, γ3, γ4) are those parameters

such that for all s, t ∈ R, s < t:

max
x,z

P [c (Y + 1, X,W ; θ) ≤ t|X = x, Z = z] ≤ Φ (t) ,

max
x,z

P [c (Y,X,W ; θ) ≥ t|X = x, Z = z] ≤ 1− Φ (t) ,

max
x,z

P [(s ≤ c (Y,X,W ; θ) ∧ c (Y + 1, X,W ; θ) ≤ t) |X = x, Z = z] ≤ Φ (t)− Φ (s) .

If we continue to assume that U ∥ (X,Z) but without imposing U ∼ N (0, σ2), we have

from Chesher and Rosen (2017) Corollary 3 that bounds on θ are given by the following

1When the endpoints of the intervals in (A.1) are finite it is convenient to define these intervals as closed
intervals which include their endpoints, although this is of no substantive consequence with continuously
distributed U .
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inequalities for all t1, t2 ∈ R±∞ with t1 < t2, where R±∞ denotes the extended real line (i.e.

inclusive of ±∞):

max
x,z

Cθ ([t1, t2] |x, z) ≤ min
x,z

Cθ ([t1, t2] |x, z) .

Substitution for Cθ and Cθ then delivers the inequalities displayed in the main text. With

this assumption in place we require a location normalization, for which we can use the

restriction that Median (U |X,Z) = 0, giving the inequalities

max
x,z

Cθ ((−∞, 0] |x, z) ≤ 1

2
≤ min

x,z
Cθ ((−∞, 0] |x, z) . (A.2)

If we then drop the independence restriction U ∥ (X,Z) and replace it with only the

weaker restriction that Median (U |X,Z) = 0, we obtain the inequalities given in (3.3) and

(3.4).

max
x,z

P [c (Y + 1, X,W ; θ) ≤ 0|X = x, Z = z] ≤ 1

2
,

max
x,z

P [c (Y,X,W ; θ) ≥ 0|X = x, Z = z] ≤ 1

2
.
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B Data Description

Table B.1 shows the set of covariates which were elicited in a baseline survey before ran-

domization took place in 1994-1998. These covariates include randomization site, gender,

age, race and ethnicity, marital status, work and education, whether on welfare, household

income, household size, and covariates on the kind of neighborhood the individual was living

in and reasons why they wanted to move. As may be seen in Table B.1 the baseline covariates

are quite balanced across different treatment arms.

Prior to our access, some observations for baseline covariates in the ICPSR data were

replaced with imputed values (or group averages), either when the observation on the co-

variate was missing or to maintain data confidentiality; further details are provided in the

codebook documentation of the MTO Restricted Access Dataset (ICPSR 34860) for the Sci-

ence article Ludwig et al. (2012). We thus report estimates in all point-identifying models

with and without controlling for these baseline covariates.

In empirical analysis that produces point estimates we use weights in our empirical analy-

sis following Ludwig et al. (2012) to account for differences in random assignment proportions

across sites and time as well as various aspects of survey administration. Further details re-

garding these weights can be found in the supplementary material to Ludwig et al. (2012).

In unreported results, we also carried out all computations without incorporating sampling

weights and obtained only small numerical differences, resulting in qualitatively similar con-

clusions. These weights were not used in empirical analysis using moment inequalities, as

weighting different covariate subpopulations has no effect on identification analysis at the

population level, and its effect on inference with partial identification using many moment

inequality has not been studied.

Ludwig et al. (2012) construct residential poverty using the z-score of duration weighted

share poor in an individual’s neighborhood while share minority is constructed using the z-

score of duration weighted share minority. Share poor is the fraction of census tract residents

living below the poverty threshold while share minority is the fraction of census tract minority

residents. These variables are constructed using interpolated data from the 1990 and 2000

decennial census as well as the 2005-2009 American Community Survey for all neighborhoods

MTO adults lived in between random assignment and the start of the long term survey

fielding period. Duration weighted share poor and share minority are the ‘average measures

weighted by the amount of time respondents lived at each of their addresses between random

assignment and May 2008 (just prior to the start of the long term survey fielding period)’.
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Z-scores of these variables are standardized values of the duration-weighted neighborhood

characteristic, using the control group weighted average and standard deviation.2

Figures B.1 and B.2 show the distributions of these across different treatment groups.

Adults belonging to the experimental voucher group lived in less poor neighborhoods than

either the MTO traditional section 8 voucher group or the control group (Figure B.1). Adults

belonging to the experimental voucher group also lived in neighborhoods that had fewer

minority residents, but the difference from the MTO traditional section 8 voucher group or

the control group is less striking than for neighborhood poverty (Figure B.2).

2Ludwig et al. (2012) use duration weighted measures rather than current measures of neighborhood
environment in their main analysis since an individual’s life outcomes may depend on cumulative exposure to
the neighborhood environment. Nevertheless, they find that their main conclusions remain robust to the use
of current measures of neighborhood environment, or neighborhood poverty and share minority measured at
the start of the MTO long-term fieldwork (May 2008).
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Table B.1: Baseline characteristics of MTO adults or covariates X across randomization
groups

Experimental Section 8 Control

Site:

Baltimore 0.14 0.14 0.14

Boston 0.19 0.19 0.22

Chicago 0.27 0.16 0.16

Los Angeles 0.19 0.22 0.27

New York 0.22 0.29 0.20

Demographic characteristics:

African American (non-hispanic) 0.67 0.59 0.63

Hispanic ethnicity (any race) 0.28 0.36 0.32

Female 0.99 0.98 0.98

<= 35 years old 0.14 0.14 0.15

36-40 years old 0.21 0.23 0.22

41-45 years old 0.25 0.22 0.23

46-50 years old 0.19 0.19 0.18

Never married 0.64 0.61 0.64

Parent while younger than 18 years old 0.26 0.26 0.25

Working 0.27 0.28 0.24

Enrolled in school 0.16 0.18 0.16

High school diploma 0.40 0.35 0.37

General Education Development (GED) certificate 0.16 0.18 0.19

Receiving Aid to Families with Dependent Children (AFDC) 0.77 0.74 0.78

Household characteristics:

Household income (dollars) 12,659 12,799 12,655

continued on next page
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Table B.1: Baseline characteristics of MTO adults or covariates X across randomization
groups

Experimental Section 8 Control

Household owns a car 0.17 0.18 0.17

Household member had a disability 0.15 0.17 0.15

No teens in household 0.61 0.62 0.64

Household size is <= 2 0.21 0.22 0.20

Household size is 3 0.30 0.30 0.32

Household size is 4 0.24 0.24 0.22

Neighborhood characteristics:

Household member was a crime victim in past 6 months 0.43 0.42 0.41

Neighborhood streets very unsafe at night 0.49 0.54 0.51

Very dissatisfied with neighborhood 0.47 0.48 0.45

Household living in neighborhood > 5 years 0.60 0.63 0.60

Household moved more > 3x in last 5 yrs 0.09 0.08 0.11

Household has no family living in neighborhood 0.63 0.64 0.63

Household has no friends living in neighborhood 0.40 0.41 0.41

Household head chatted with neighbor >= 1x per week 0.53 0.50 0.54

Household head very likely to to tell on neighborhood kid 0.55 0.52 0.56

Household head very sure of finding apartment 0.47 0.50 0.46

Housheold head applied for Section 8 before 0.39 0.40 0.43

Primary or secondary reason for wanting to move:

Want to move to get away from gangs and drugs 0.78 0.75 0.78

Want to move for better schools for children 0.49 0.54 0.47

Want to move to get a bigger/better apartment 0.45 0.44 0.46

continued on next page
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Table B.1: Baseline characteristics of MTO adults or covariates X across randomization
groups

Experimental Section 8 Control

Want to move to get a job 0.07 0.05 0.06

N 1422 655 1098

Notes: Each cell gives the average value of a variable in the sub-sample. Only observations with non-missing values for

Subjective Well Being (SWB), neighbourhood characteristics and x covariates are used. There are seven observations with

missing SWB, three observations with missing neighborhood characteristics and 89 out of 3,273 observations with missing

household income. Some observations of covariates include imputed values.

Source: Data from ICPSR Study 34860: Moving to Opportunity: Final Impacts Evaluation Science Article Data, 2008-

2010.
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Figure B.1: Distribution of neighborhood poverty by randomization group
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Notes: Only observations with non-missing values for neighborhood poverty are used (neigh-

borhood poverty is missing for 3 out of 3,273 adults). These include 1,453 adults in the

Experimental group, 678 adults in the Section 8 group and 1,139 adults in the Control group.

Source: Data from ICPSR Study 34860: Moving to Opportunity: Final Impacts Evaluation

Science Article Data, 2008-2010.
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Figure B.2: Distribution of neighborhood minority by randomization group
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Notes: Only observations with non-missing values for neighborhood minority are used (neigh-

borhood minority is missing for 3 out of 3,273 adults). These include 1,453 adults in the

Experimental group, 678 adults in the Section 8 group and 1,139 adults in the Control group.

Source: Data from ICPSR Study 34860: Moving to Opportunity: Final Impacts Evaluation

Science Article Data, 2008-2010.
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C Linear Model Estimates

We estimate linear model parameters using the ICPSR MTO data using similar methods

as Ludwig et al. (2012). Our results are very similar to theirs, with minor differences

seemingly down to small discrepancies between their data and that available through ICPSR.

The estimation sample in the original analysis has 3, 273 adults while the estimation sample

using data from ICPSR has 3, 175 adults; this is due to the missing observations on SWB,

neighborhood characteristics and household income in the ICPSR data. Additionally, some

observations for baseline covariates in the ICPSR data are replaced with imputed values (or

group averages) either when the observation is missing or to maintain data confidentiality.

The results obtained using least squares linear regression are presented in Panel A of Table

C.1; results are given using neighborhood poverty and share minority separately and together

as neighborhood characteristics W . The coefficients on W give the effect of neighborhood

characteristics on SWB under the assumption that W is uncorrelated with U .

In columns (1)-(3) of Panel A in Table C.1, dummy variables for randomization site are

used as the only covariates X. The results show a statistically significant and negative effect

of neighborhood poverty and share minority on SWB. When both neighborhood poverty

and share minority are included, the negative effect of share minority on SWB becomes

statistically indistinguishable from zero. In columns (4)-(6) of the table a complete set of

baseline covariates (as given in Table B.1) is included, and the results remain qualitatively

unchanged.

Interactions of MTO assignment and randomization site are used as instrumental vari-

ables Z in the results reported in Panel B of Table C.1.3 Unlike the results in Panel A

these estimators allow for the possibility that neighborhood characteristics are endogenous.

Under an instrument monotonicity assumption the estimated coefficients are consistent for

weighted averages of LATE parameters; see Chapter 4.5 of Angrist and Pischke (2009) for

details regarding the mixture of LATE parameters estimated when there are multiple en-

dogenous variables and additional covariates. These are, however, sensitive to the cardinal

scale used for the categorical SWB outcomes.

Columns (1)-(3) in Panel B of Table C.1 report results without the inclusion of additional

3That is, instrumental variables Z here refer to interactions of both the included exogenous variable
randomization site as well as excluded exogenous treatment assignment; these are identical to the instruments
used by Ludwig et al. (2012). For tests on the validity of these instruments and alternative estimates
(including limited information maximum likelihood (LIML) and Fuller-modified LIML) designed to adjust
for weak instruments we refer the reader to Tables S5 and S9 of the supplementary materials to Ludwig et
al. (2012).
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covariates. As before the coefficient on neighborhood poverty is negative and statistically

significantly different from zero. The coefficient on the neighborhood minority variable is

closer to zero. In column (2) it is statistically insignificant and in column (3) it is positive

and larger in magnitude, but remains statistically insignificant.

Columns (4)-(6) report results when a complete set of baseline covariates is included.

These results can be directly compared with those in Tables S5 and S9 in the supplementary

material to Ludwig et al. (2012), where estimates from IV regressions that included baseline

covariates were also reported. The results reported in Panel B of Table C.1 are qualita-

tively similar, with minor differences likely caused by the aforementioned differences in the

two estimation samples and small modifications to the data available through ICPSR. The

coefficient on neighborhood poverty on SWB in Table S5 is −0.141 while here it has been

estimated as −0.096, both having p-values less than 0.05. The coefficient on neighborhood

minority on SWB in Table S5 is −0.069 while here it has been estimated as −0.063, both
with p-values higher than 0.1. The coefficient on neighborhood poverty, while controlling for

neighborhood minority, in Table S9 is −0.261 while here it has been estimated as −0.186,
both with p-values less than 0.01. The coefficient on neighborhood minority, while control-

ling for neighborhood poverty, in Table S9 is 0.279 with a p-value between 0.05 and 0.1 while

here it has been estimated as 0.202 with a p-value of 0.105.

Table C.2 reports ITT effects obtained by linear regression of SWB on X and Z using

the ICPSR MTO data, which correspond roughly to those of Table S4 of the supplementary

material to Ludwig et. al (2012). Specifically, the coefficient on MTO voucher assignment

is the ITT effect. Columns (1)-(3) of Table C.2 report ITT estimates without including a

complete set of covariates while columns (4)-(6) report ITT estimates with inclusion of these

covariates. Column (1) pools both kinds of vouchers (experimental and section 8) together.

Column (2) excludes adults who were randomly assigned the section 8 voucher, so gives

the ITT effect of the experimental voucher on SWB. Column (3) excludes adults who were

randomly assigned the experimental voucher, so gives the ITT effect of the section 8 voucher

on SWB. In all three cases the ITT effect of an MTO voucher is positive with a p-value

between 0.01 and 0.10, consistent with a positive effect of being offered an MTO voucher on

SWB.

Compared to the case without covariates, the coefficient on the MTO voucher reported

in columns (4)-(6) of Table C.2 is slightly larger. Estimates still indicate a positive and

statistically significant effect of being offered an MTO voucher on SWB.
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Table C.1: Linear model estimation (OLS and IV) of neighborhood effects on SWB

(1) (2) (3) (4) (5) (6)

Panel A: OLS estimation

βPoverty -0.0551*** -0.0491*** -0.0546*** -0.0534***

(0.0130) (0.0148) (0.0131) (0.0151)

βMinority -0.0367*** -0.0135 -0.0287** -0.0029

(0.0129) (0.0147) (0.0136) (0.0157)

N 3263 3263 3263 3175 3175 3175

Panel B: IV estimation

βPoverty -0.0916** -0.1803*** -0.0962** -0.1859***

(0.0382) (0.0675) (0.0376) (0.0687)

βMinority -0.0383 0.2048 -0.0632 0.2019

(0.0694) (0.1245) (0.0688) (0.1247)

N 3263 3263 3263 3175 3175 3175

Notes: The dependent variable is Subjective Well Being (SWB) which takes the value zero for not too happy, one
for pretty happy and two for very happy; columns (1)-(3) use a set of dummy variables for randomization site as
covariates X while columns (4)-(6) use a complete set of baseline characteristics (as given in Table B.1), and whether
a sample adult was included in the first release of the long-term evaluation survey fielding period, as covariates X;
all regressions are weighted; * p-value < 0.10, ** p-value < 0.05, *** p-value < 0.01.
Source: Data from ICPSR Study 34860: Moving to Opportunity: Final Impacts Evaluation Science Article Data,
2008-2010.
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Table C.2: Linear model estimation (ITT) of neighborhood effects on SWB

(1) (2) (3) (4) (5) (6)

Z = Any voucher 0.0630** 0.0660**

(0.0283) (0.0284)

Z = Low pov voucher 0.0521* 0.0546*

(0.0298) (0.0298)

Z = Sec 8 voucher 0.0793** 0.0875**

(0.0385) (0.0440)

N 3266 2593 1811 3178 2523 1753

Notes: The dependent variable is Subjective Well Being (SWB) which takes the value zero for not too happy, one for pretty
happy and two for very happy; columns (1)-(3) use a set of dummy variables for randomization site as covariates X while
columns (4)-(6) use a complete set of baseline characteristics (as given in Table B.1), and whether a sample adult was
included in the first release of the long-term evaluation survey fielding period, as covariates X; all regressions are weighted;
* p-value < 0.10, ** p-value < 0.05, *** p-value < 0.01.
Source: Data from ICPSR Study 34860: Moving to Opportunity: Final Impacts Evaluation Science Article Data, 2008-
2010.
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D Complete Triangular Model First Stage Estimates

First stage estimates for the CT model estimated in Section 4.2 are presented below in Table

D.1.

Table D.1: Triangular IV estimation of neighborhood effects on SWB, first stage

(1) (2) (3) (4) (5) (6)

δexp,Balt
1 -1.0912*** -0.8235*** -1.0910*** -1.1591*** -0.9015*** -1.1589***

(0.1017) (0.1143) (0.1021) (0.1038) (0.1190) (0.1042)

δexp,Bos
1 -1.2798*** -1.7007*** -1.2819*** -1.2154*** -1.4961*** -1.2168***

(0.0877) (0.1264) (0.0876) (0.0896) (0.1189) (0.0898)

δexp,Chi
1 -0.3068*** 0.0993 -0.3055*** -0.3470*** 0.0334 -0.3450***

(0.0852) (0.0736) (0.0853) (0.0915) (0.0792) (0.0917)

δexp,LA1 -0.8787*** -0.3421*** -0.8801*** -0.8137*** -0.3436*** -0.8142***

(0.1007) (0.0822) (0.1003) (0.1044) (0.0916) (0.1042)

δexp,NY
1 -0.8052*** -0.1401 -0.8021*** -0.7993*** -0.1326 -0.7945***

(0.0875) (0.0854) (0.0877) (0.0891) (0.0873) (0.0895)

δsec8,Balt
1 -1.0427*** -0.6651*** -1.0412*** -1.1065*** -0.7093*** -1.1032***

(0.1184) (0.1992) (0.1194) (0.1254) (0.1986) (0.1264)

δsec8,Bos
1 -1.0880*** -1.2662*** -1.0838*** -1.0376*** -1.1362*** -1.0328***

(0.1055) (0.1428) (0.1058) (0.1130) (0.1455) (0.1134)

δsec8,Chi
1 -0.1905* 0.2901*** -0.1863* -0.2696** 0.1970** -0.2643**

(0.1092) (0.0802) (0.1092) (0.1171) (0.0894) (0.1168)

δsec8,LA1 -0.8139*** 0.0257 -0.8072*** -0.7508*** -0.0071 -0.7429***

(0.0960) (0.0988) (0.0960) (0.1041) (0.1066) (0.1038)

δsec8,NY
1 -0.3742*** -0.0448 -0.3728*** -0.3945*** -0.0548 -0.3920***

(0.0913) (0.0838) (0.0916) (0.0923) (0.0867) (0.0926)

δcont,Balt
1 -0.5220*** -0.3311*** -0.5184*** -0.5641*** -0.3941*** -0.5590***

(0.0899) (0.0931) (0.0902) (0.0949) (0.0998) (0.0951)

continued on next page
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Table D.1: Triangular IV estimation of neighborhood effects on SWB, first stage

(1) (2) (3) (4) (5) (6)

δcont,Bos
1 -0.7145*** -1.1184*** -0.7106*** -0.6409*** -0.9028*** -0.6350***

(0.0722) (0.1018) (0.0721) (0.0823) (0.1047) (0.0825)

δcont,Chi
1 0.2299** 0.2621*** 0.2297** 0.1848* 0.2124*** 0.1855*

(0.0999) (0.0718) (0.0999) (0.1078) (0.0809) (0.1077)

δcont,LA1 0.1584* 0.2110*** 0.1597* 0.2360** 0.2192*** 0.2381**

(0.0907) (0.0664) (0.0906) (0.0959) (0.0729) (0.0959)

δcont,NY
1 0.1371** 0.1735*** 0.1354** 0.5305** -0.2895 0.5258**

(0.0547) (0.0567) (0.0548) (0.2234) (0.2631) (0.2235)

δexp,Balt
2 -0.8173*** -0.8886***

(0.1118) (0.1171)

δexp,Bos
2 -1.7055*** -1.4949***

(0.1226) (0.1166)

δexp,Chi
2 0.0880 0.0216

(0.0733) (0.0798)

δexp,LA2 -0.3677*** -0.3710***

(0.0828) (0.0929)

δexp,NY
2 -0.1588* -0.1447*

(0.0846) (0.0877)

δsec8,Balt
2 -0.6895*** -0.7349***

(0.1946) (0.1968)

δsec8,Bos
2 -1.2842*** -1.1477***

(0.1401) (0.1415)

δsec8,Chi
2 0.2812*** 0.1982**

(0.0799) (0.0877)

δsec8,LA2 0.0347 0.0240

(0.0883) (0.0941)

continued on next page
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Table D.1: Triangular IV estimation of neighborhood effects on SWB, first stage

(1) (2) (3) (4) (5) (6)

δsec8,NY
2 -0.0617 -0.0641

(0.0843) (0.0863)

δcont,Balt
2 -0.3553*** -0.4127***

(0.0982) (0.1033)

δcont,Bos
2 -1.1349*** -0.9192***

(0.1018) (0.1077)

δcont,Chi
2 0.2454*** 0.1999**

(0.0743) (0.0824)

δcont,LA2 0.1980*** 0.2055***

(0.0667) (0.0731)

δcont,NY
2 0.1858*** -0.2870

(0.0565) (0.2625)

N 3263 3263 3263 3175 3175 3175

Notes: Each column reports first stage estimates of a triangular model for specifications reported in corresponding columns

of Table 3. The dependent variables in the first stage are neighborhood poverty and neighborhood minority. Columns

(1)-(3) exclude while columns (4)-(6) include a complete set of baseline characteristics (as given in Table B.1), as well as

whether a sample adult was included in the first release of the long-term evaluation survey fielding period, as covariates X;

all regressions are weighted; * p-value < 0.10, ** p-value < 0.05, *** p-value < 0.01.

Source: Data from ICPSR Study 34860: Moving to Opportunity: Final Impacts Evaluation Science Article Data, 2008-

2010.
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E Semi-Monotone Instrument

In this section we briefly consider the ability of a type of instrument monotonicity restriction

to sign the effect of neighborhood poverty on SWB, when used in conjunction with the IV

modeling restrictions. This constitutes a blend of the sort of monotonicity restriction used by

Pinto (2019) with the IV model, in a setting in which the endogenous variable is continuous

and latent type space is infinite.

Receipt of either type of voucher by a household expands the menu of housing options

available. This may be credibly thought to induce low income participants to choose a

housing location in a neighborhood of no higher poverty level than would have been chosen

had they not received the voucher. Further, if an experimental voucher were received that

stipulates it can only be used in a neighborhood with poverty rate below some threshold, one

might reason that this would induce individuals to live in an even (weakly) lower poverty

neighborhood. On the other hand, it could be that some participants who would move if

awarded a traditional voucher might choose not to move at all if given an experimental

voucher, because of the additional restrictions imposed on those neighborhoods to which

they could move. Nonetheless, receipt of a traditional voucher could induce those families

to move to a lower poverty neighborhood than the one they would otherwise be in, even if

it were not of low enough poverty level to use the experimental voucher.

This can be used to motivate an instrument semi-monotonicity restriction, in which it is

assumed that counterfactual neighborhood poverty is weakly lower under receipt of either

kind of voucher than it would be if no voucher were received. This does not impose any

restriction on the relationship between neighborhood choice under the two different kinds of

vouchers.

To formalize this restriction, suppose that neighborhood minority is the sole endogenous

neighborhood characteristic W , and let the random vector (W0,W1,W2) denote a given

individual’s potential value of W from treatment assignment, or equivalently instrument

value Z. Motivated by random assignment of the treatment, we assume that (W0,W1,W2) ∥

Z|X. The observed value of the endogenous variable is W = WZ . The instrument semi-

monotonicity restriction can then be written as follows.

Restriction SMI: W0 ≥ W1 and W0 ≥ W2 almost surely.

As previously noted, the rationale for this restriction follows similar reasoning to the

instrument monotonicity restriction used in Pinto (2019) in conjunction with random as-

signment of treatment. Here we adapt his logic to the present analysis, which differs in that
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(i) the outcome of interest is ordinal rather than continuous, and (ii) the endogenous variable

is continuous rather than discrete. The reasoning extends the well-known instrument mono-

tonicity assumption used with a binary instrument in Imbens and Angrist (1994) and Angrist

et al. (1996) to more general cases, in conjunction with revealed preference arguments.

Depending on the data, the inequalities delivered by the IV model presented in Section

3 may or may not be sufficient to sign the effect of the endogenous variable W on sub-

jective well-being, whereas additionally imposing instrument semi-monotonicity can do this

in a transparent fashion. To understand how, consider the probability of response Y = 0

conditional on X and Z corresponding to no voucher. Suppose one compares this to the

same conditional probability holding the value of X fixed but now conditioning on Z cor-

responding to receipt of a voucher. If the second conditional probability is higher (lower),

then, because Z is excluded from the outcome equation, the increase must be due to the

effect of the change in voucher receipt on W . Since voucher receipt weakly lowers W for all

households under Restriction SMI, this means that lower W , all else equal, leads to a higher

(lower) conditional probability of Y = 0. Formally, if β > 0, then we have for z̃ ∈ {1, 2}:

P [Y = 0|X = x, Z = 0] = P [U ≤ c1 −W0β −Xγ|X = x, Z = 0]

= P [U ≤ c1 −W0β −Xγ|X = x, Z = z̃]

≤ P [U ≤ c1 −Wz̃β −Xγ|X = x, Z = z̃] = P [Y = 0|X = x, Z = z̃] ,

where the second equality follows by random assignment conditional on X and the inequality

follows since W0 ≥ Wz̃ under Restriction SMI. Therefore if we observe that

P [Y = 0|X = x, Z = 0] > P [Y = 0|X = x, Z = z̃] , (E.1)

we can conclude that β ≤ 0. Similar reasoning applies to changes in the conditional proba-

bility of Y = 2, from which it follows that

P [Y = 2|X = x, Z = 0] < P [Y = 2|X = x, Z = z̃] . (E.2)

also implies that β ≤ 0. Thus, a researcher who imposes Restriction SMI together with

conditional independence from random assignment, in addition to the IV assumptions of

Section 3.1, can test whether (E.1) and (E.2) hold for all x ∈ Supp(X) and all z̃.

In some of our empirical analysis W denotes both a measure of neighborhood poverty

and the proportion of minority households in a neighborhood. Extensions of Restriction
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SMI for multivariate W could also be considered. Without placing some restrictions on

counterfactual values of the additional component(s) of W the inequalities derived above

need not follow, and further care would need to be taken regarding assumptions on the

impact of instrument Z on multivariate potential outcomes.
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F Additional Computational Details

This section provides computational details further to those of Section 3.2.

F.1 Numerical Illustrations

Computations for numerical illustration of IV bounds discussed in Section 3.2 and reported

in Table 1 were done by executing an R script using the nloptr package (Ypma (2018)) that

wraps functionality in the nonlinear optimization package nlopt (Johnson (2007–2019)). The

lower and upper bounds reported in Table 1 were computed by minimizing p (θ; y, x, w) and

ME (θ; y, x, w), and −p (θ; y, x, w) and −ME (θ; y, x, w), respectively, subject to inequalities

of the form (3.2) using values s < t both in {−∞,Φ−1(1/n),Φ−1(2/n), ...,Φ−1((n− 1)/n),∞},
as described in Section 3.2.

Minimization was done using the COBYLA algorithm of nloptr. At termination of the

COBYLA algorihm there are typically a few inequalities that are violated by small amounts,

of the order of 1e−9. In the calculations reported in the paper the inequalities were adjusted

by subtracting an amount ε < 1e− 5 from the Gaussian probabilities on the right hand side

of the inequalities (3.2) - (3.4). The amount subtracted varies with y2 and y1 and in most

cases is 1e−6. With this adjustment at the termination of COBYLA there are no violations

of the original unadjusted inequalities. The adjustment has no effect on the bounds to the

accuracy reported here.

For the sake of illustrating identified sets delivered by the data generating structures

employed, the probabilities on the left hand side of (3.2) were calculated using the probability

distribution of (Y,W ) given Z = z delivered by the structure employed in the numerical

example, in which X = 1 is a constant. This expression, here denoted

℘(s, t, x, z; θ) ≡ P [(s ≤ c (Y,X,W ; θ) ∧ c (Y + 1, X,W ; θ) ≤ t) |X = x, Z = z] ,

where “∧” denotes “and” simplifies as follows depending on the values of s and t employed.

Case 1: s = −∞, t <∞.

℘(−∞, t, x, z; θ) =

P [(Y = 0 ∧Wβ ≥ c1 −Xγ − t) ∨ (Y = 1 ∧Wβ ≥ c2 −Xγ − t) |X = x, Z = z] . (F.1)
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Case 2: s > −∞, t =∞.

℘(s,∞, x, z; θ) =

P [(Y = 1 ∧Wβ ≤ c1 −Xγ − s) ∨ (Y = 2 ∧Wβ ≤ c2 −Xγ − s) |X = x, Z = z] . (F.2)

Case 3: −∞ < s < t <∞.

℘(s, t, x, z; θ) = P [Y = 1 ∧ c2 −Xγ − t ≤ Wβ ≤ c1 −Xγ − s|X = x, Z = z] . (F.3)

These probabilities can be computed for any (s, t, x, z, θ) given the values of population

parameters, making use of the CT structure used for these illustrations, in which

Y =
J∑

j=1

j × 1 [c0,j < Wβ0 +Xγ0 + U ≤ c0,j+1] , W = δx + Zδz + V,

(U, V ) ∼ BVN

((
0

0

)
,

(
1 R

R Σv

))
,

with population parameters θ0 ≡ (c0,1, c0,2, β0, γ0, δx, δz, R,Σv)
′ taking values as specified on

page 16 under “Numerical Illustration of IV Bounds”.4 Substituting for W in equation 2.1

for the determination of Y there is

Y =


0 , V β0 + U ≤ c0,1 −Xγ0 − (δx + Zδz) β0

1 , c0,1 −Xγ0 − (δx + Zδz) β0 < V β0 + U ≤ c0,2 −Xγ0 − (δx + Zδz) β0

2 , c0,2 −Xγ0 − (δx + Zδz) β0 < V β0 + U

 .

Defining (V1, V2) ≡ (V β0 + U, V β) such that

(V1, V2) ∼ BVN

((
0

0

)
,

(
β2
0Σv + 2β0R + 1 ββ0Σv + βR

ββ0Σv + βR β2
0Σv

))
,

and making use of V ∥ (X,Z), the probabilities (F.1), (F.2) and (F.3) are as follows.

4Here the parameter vector θ = (c1, c2, γβ) whose identifed set is of interest comprises fewer elements
than θ0. This is because the true data generating process in these illustrations is from a CT structure
specified by more parameters than the single equation IV model.
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℘(−∞, t, x, z; θ) =

P [(V1 ≤ c0,1 − xγ0 − δxβ0 − zδzβ0 ∧ V2 ≥ c1 − xγ − δxβ − zδzβ − t)]

+ P [c0,1 ≤ V1 + xγ0 + δxβ0 + zδzβ0 ≤ c0,2 ∧ V2 ≥ c2 − xγ − δxβ − zδzβ − t] ,

℘(s,∞, x, z; θ) =

P [c0,1 ≤ V1 + xγ0 + δxβ0 + zδzβ0 ≤ c0,2 ∧ V2 ≤ c1 − xγ − δxβ − zδzβ − s)]

+ P [V1 ≥ c0,2 − xγ0 + δxβ0 + zδzβ0 ∧ V2 ≤ c2 − xγ − δxβ − zδzβ − s] ,

℘(s, t, x, z; θ) =

P [c0,1 ≤ V1 + xγ0 + δxβ0 + zδzβ0 ≤ c0,2 ∧ c2 − t ≤ V2 + xγ + δxβ + zδzβ ≤ c1 − s] .

Since (V1, V2) are bivariate normal with parameters given in (F.1) these probabilities can

be computed using standard software. In our numerical examples, such probabilities were

calculated using the pmvnorm function in the R package mvtnorm, Genz et al. (2021), which

additionally refers to Genz and Bretz (2009).

When β = 0 there are further simplifications, as follows:

℘(−∞, t, x, z; θ) = 1 [c1 − xγ ≤ t] · P[Y = 0|x, z] + 1 [c2 − xγ ≤ t] · P[Y = 1|x, z],

℘(s,∞, x, z; θ) = 1 [c1 − xγ ≥ s] · P[Y = 1|x, z] + 1 [c2 − xγ ≥ s] · P[Y = 2|x, z],

℘(s, t, x, z; θ) = 1 [c2 − t ≤ xγ ≤ c1 − s] · P[Y = 1|x, z],

where

P[Y = 0|x, z] = Φ

(
c0,1 − xγ0 − (δx + zδz) β0

(β2
0Σv + 2β0R + 1)

1/2

)

P[Y = 1|x, z] = Φ

(
c0,2 − xγ0 − (δx + zδz) β0

(β2
0Σv + 2β0R + 1)

1/2

)
− Φ

(
c0,1 − xγ0 − (δx + zδz) β0

(β2
0Σv + 2β0R + 1)

1/2

)

P[Y = 2|x, z] = 1− Φ

(
c0,2 − xγ0 − (δx + zδz) β0

(β2
0Σv + 2β0R + 1)

1/2

)
The above expressions for the case β = 0 are employed for all β such that |β| < 0.00001.
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In the reported calculations for the numerical example there are no included exogenous

variables X and no parameter γ. In this case the terms Xγ0 and Xγ are zero and may be

removed.

F.2 Application to MTO

Computations using the MTO data were implemented by executing an R script (R Core

Team (2022)) using the nonlinear optimization package nlopt linked through the nloptr pack-

age (Johnson (2007–2019), Ypma (2018)) for optimization and the rcpp and rcpparmadillo

packages (Eddelbuettel and François (2011), Eddelbuettel (2013), Eddelbuettel and Sander-

son (2014), Sanderson and Curtin (2016), Eddelbuettel and Balamuta (2017)) were used

to employ C++ implementations of the most computationally intensive aspects. The full

parameter search, target parameter search, and endpoint refinement steps of Algorithm 1,

as well as the DR Bootstrap computations, each involve solving a large number of successive

minimization problems inside a loop. These loops were executed in C++ rather than R for

computational efficiency.

Simply computing the discrepancy function Q̂ (θ) defined in (3.5) at just a single value of θ

requires first computing and then taking the maximum of the ratio of 4, 485 sample moments

and standard errors. The steps described in Algorithm 1 entail computing Q̂ (θ) for a large

number of different values of θ in order to solve the constituent constrained optimization

problems. As is typical for set estimates and confidence sets using moment inequalities,

and especially when there is such a large number of moment inequalities, implementation

is computationally intensive. All computations reported here were carried out on a Dell

Precision 3620 i7-6700 desktop with a 3.4 gigahertz processor and 16 gigabytes of memory.

Total computation time for all eight sequences of results for conditional marginal effects

reported in Tables 4 and 5 executed in parallel took just over 20 hours, with the first one

having finished in just under 19 hours.5 For counterfactual response probabilities, twelve

sequences of computations were conducted in parallel, corresponding to the six sets of results

reported in Table 6 along with six sets of results with neighborhood minority included as an

5A sequence of results is obtained by executing Algorithm 1 for a given choice of (i) whether β is restricted
nonpositive or nonnegative, (ii) whether the marginal effect under consideration is for the response y = 0 or
y = 2, and (iii) whether the neighborhood minority variable is included or excluded from the specification.
The eight sequences for which computation time is reported refers to all such combinations. For counter-
factual response probabilities, the twelve sequences referenced correspond to all possible configurations of
(i) counterfactual response y = 0, y = 1, or y = 2, (ii) whether neighborhood poverty is fixed at the NYC
median or one standard error below, and (iii) whether the neighborhood minority variable is included or
excluded.
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additional endogenous variable.6 All six sequences of computations corresponding to results

reported in Table 6 were completed in a little over two days, and all twelve sequences were

finished in a little more than three days.

To give a rough reflection of the computational complexity involved, note that each

sequence of computations reported comprised roughly between 129,000 and 153,000 evalua-

tions of Q̂ (θ) at different values of θ, not including bootstrap computations. For the eight

sequences of computations for the conditional marginal effects a total of 1, 161, 946 evalu-

ations of Q̂(·) were executed, each one comprising a maximum 4, 485 studentized moment

functions. Implementation of the DR bootstrap additionally requires repeated computation

of the the maximization problem (F.7) and the bootstrap statistic in (F.9) below. Com-

putations for counterfactual response probabilities required substantially more computation

of bootstrap critical values, which is apparently what resulted in the longer execution time

reported above.

Details of the DR Bootstrap procedure are provided below, followed by a table that

provides a rough outline of key functions employed for computations described in Algorithm

1. The code used to carry out these computations can be found at https://github.com/

adammrosen/MTO-Replication.

Discard Resampling Bootstrap

Computation of the DR Bootstrap critical value is implemented in the C++ function Boot-

strapCV, which takes r, the hypothesized value of g(θ) as an argument. We follow the steps

described by Belloni et al. (2018) on pages 12–13 and define the bootstrap process

v̂∗θ,j ≡ n−1/2

n∑
i=1

ξi{ωj(Y,W,X,Z; θ)− m̂j(θ)}, (F.4)

where {ξi : i = 1, ..., n} denote i.i.d. standard normal bootstrap draws independent of the

data. We further define

Θ̂(r) ⊆ {θ ∈ Θ(r) : Q̂(θ) = T̂ (r)}, (F.5)

which is a set of values of θ such that g(θ) = r and for which the discrepancy function Q̂(θ)

attains the value of the profile discrepancy at r, T̂ (r). For the results reported in Tables

6To save on space IV estimates and confidence sets for counterfactual response probabilities with the
neighborhood minority variable included are not reported. By construction, they produce larger sets than
those obtained with the neighborhood minority variable excluded as was the case with conditional marginal
effects.
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4 – 6 we specify Θ̂(r) as the singleton set {θ̂}, where θ̂ is the value of θ achieved in the

constrained minimization defining Θ̂(r) in (3.5). From a computation standpoint this is the

easiest choice of Θ̂(r), but employing a larger collection of values of θ will produce (weakly)

smaller critical values. Finally,

Ψ̂θ ≡ {j ∈ [J ] :
√
nm̂j(θ)/σ̂j(θ) ≥ max

j̃∈[J ]

√
nm̂j̃(θ)/σ̂j̃(θ)−Mn} (F.6)

denotes the indices of the studentized moments that come within distance Mn of achieving

the maximum value Q̂(θ). Here Mn is an appropriately chosen sequence that diverges to ∞
as n → ∞. Such a sequence is also used in Bugni et al. (2017), but as BBC18 explain, in

a many moment inequality setting it is required additionally that Mn/w̄n →∞, with w̄n as

specified in BBC equation (4.2). We follow their recommendation for approximating w̄n by

approximating with w̄∗
n the 1− γn quantile of

sup
θ∈Θ(r),j∈[J ]

|v̂∗θ,j|, (F.7)

and in order to ensure Mn/ω̄n →∞ we set

Mn = log(n) · w̄∗
n. (F.8)

Finally, using (F.4) – (F.7), the DR bootstrap test statistic is defined as

RDR∗
n ≡ inf

θ∈Θ̂(r)
max

j∈Ψ̂θ(Mn)
v̂∗θ,j. (F.9)

For a given r the DR bootstrap test statistic critical value cDR
n (r, α) is then computed

by first taking B bootstrap samples of independent standard normal variates ξ1, ..., ξn and

computing the bootstrap process (F.4). For each bootstrap sample the following steps are

then conducted:

1. Compute ω̄n by solving the maximization problem in (F.7) and set Mn = log(n) · ω̄n.

2. Compute RDR∗
n defined in (F.4).

Once these steps are finished the DR critical value cDR
n (r, α) is set to the 1 − α quantile of

RDR∗
n in the B bootstrap iterations. For results presented here, B = 99 was used.
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Functions Referenced in Algorithm 1

Function MinDiscrepancyCpp(Θ̃)
∀θs ∈ Θ̃ minimize Q̂(θ) using θs as starting value.
return for each θs ∈ Θ̃
– Vector θ∗ at which minimization terminated.
– Discrepancy value Q̂ (θ∗) achieved.
– Target parameter value g (θ∗).

End Function

Function ProfileDiscrepancyOnGridCpp(G, runDR)
for each r ∈ G do Compute T̂ (r)← minθ{Q̂(θ) : g(θ) = r}

if (runDR & T̂ (r) > 0) then
Compute DR critical value cDR

n (r, α) by calling BootstrapCV(r)
end if

end for
return for each r ∈ G
– Profile discrepancy value T̂ (r)
– Vector θ such that Q̂(θ) = T̂ (r)
– DR critical value cDR

n (r, α)
End Function

Function RefineBoundCpp(rout, rin, fromLower,∆)
Construct a grid G from rout to rin in increments of ∆.
if (fromLower) then

return min{r ∈ G : T̂ (r) ≤ c}
else

return max{r ∈ G : T̂ (r) ≤ c}
end if
End Function

Function BootstrapCV(r)
for each b = 1, ..., B do

Compute ω̄n and set Mn = log(n) · ω̄n

Compute RDR∗
n = inf

θ∈Θ̂(r)
max

j∈Ψ̂θ(Mn)
v̂∗θ,j

end for
return 1− α quantile of RDR∗

n

End Function
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